ACCURACY ASSESSMENT OF PRECISE POINT POSITIONING WITH MULTI-CONSTELLATION GNSS DATA UNDER STRONG SOLAR BURST EFECTS
Main Article Content
Abstract
Solar variations modify a layer of the Earth’s upper atmosphere known as the ionosphere. This is of particular concern for the aviation sector because of the way its communications and navigation systems can be affected. At the same time, one of the most complex atmospheric effects is the response of ionospheric regions to geomagnetic storms. The ionospheric response during the same storm can vary in time in different locations, which can introduce significant errors/displacement (meters) in single-frequency relative GNSS positioning (DGNSS technology). The residual effect can be somewhat mitigated by using dual- or multi-frequency GNSS, but dual frequency is not a guarantee against degradation of relative observations results, especially during significant geomagnetic storms. In this regard, PPP absolute positioning technology can be effective. However, another atmospheric effect – ionospheric scintillation can have a significant impact on the accuracy of both GNSS positioning approaches. The main goal of this study was to analyze the effect of second-order ionospheric delay during geomagnetic storms and ionospheric scintillations on GNSS positioning using the PPP method. GNSS data corrected and uncorrected for higher-order ionospheric delay, respectively, were processed by the static PPP-AR method using the PRIDE-PPPAR ver.2.2.6 software for the selected periods of geomagnetic storms. From the analysis of the influence of second-order ionospheric errors, it follows that their values can reach almost 4 cm for first-frequency signals under different states of ionospheric disturbances for the GPS constellation and almost an order of magnitude less for the GNSS quadroconstellation. The appearance of stronger geomagnetic storms increases the second-order ionospheric errors by several millimeters.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Bassiri S., Hajj G.A., Higher-order ionospheric effects on the global positioning system observables and means of modeling them, “Manuscr. Geod.” 1993, vol. 18.
Brunner F.K., Gu M., An improved model for the dual frequency ionospheric correction of GPS observations, “Manuscr. Geod.” 1991, vol. 16, https://doi.org/10.1134/S0016793207020120.
Elmas Z.G., Aquino M., Marques H.A., Higher order ionospheric effects in GNSS positioning in the European region, “Ann. Geophys.” 2011, vol. 29, http://doi.org/10.5194/angeo-29-1383-2011.
Elsobeiey M., El-Rabbany A., Impact of second-order ionospheric delay on GPS precise point positioning, “J. Appl. Geophys.” 2011, vol. 5, http://doi.org/10.1515/jag.2011.004.
Fritsche M., Dietrich R., Knöfel C., Rülke A., Vey S., Rothacher M., Steigenberger P., Impact of higher-order ionospheric terms on GPS estimates, “Geophys. Res. Lett.” 2005, vol. 32, https://doi.org/10.1029/2005GL024342.
Garcia-Fernandez M., Desai S., Butala M., Komjathy A., Evaluation of different approaches to modeling the second-order ionospheric delay on GPS measurements, “J. Geophys. Res. Space Phys.c” 2011, vol. 118, http://doi.org/10.1002/2013JA019356.
Geng J., Chen X., Pan Y. et al., PRIDE PPP-AR: an open-source software for GPS PPP ambiguity resolution, “GPS Solutions” 2019, vol. 23, https://link.springer.com/article/10.1007/s10291-019-0888-1.
Grunwald G., Ciećko A., Kozakiewicz T., Krasuski K., Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation, “Sensors” 2023, vol. 23, https://doi.org/10.3390/s23031112.
Hadas T., Krypiak-Gregorczyk A., Hernández-Pajares M., Impact and implementation of higher‐order ionospheric effects on precise GNSS applications, “J. Geophys. Res. Solid Earth” 2017, vol. 122, http://doi.org/10.1002/2017JB014750.
Hang Li, Zemin Wang, Xiangbin Cui, Jingxue Guo, Lin Li, Bo Sun, The effect of the second-order ionospheric term on GPS positioning in Antarctica, Arctic, Antarctic, and Alpine, “Research” 2020, vol. 52(1), https://doi.org/10.1080/15230430.2020.1742062.
Haukka H., Harri A.M., Kauristie K., Andries J., Gibbs M., Beck P., Berdermann J., Perrone L., van den Oord B., Berghmans D., Bergeot N., De Donder E., Latocha M., Dierckxsens M., Haralambous H., Stanislawska I.M., Wilken V., Romano V., Kriegel M., Österberg K., PECASUS - ICAO Designated Space Weather Service Network for Aviation, EGU General Assembly 2020, 4–8 May 2020, EGU2020-7650, https://doi.org/10.5194/egusphere-egu2020-7650.
Hernández-Pajares M., Juan J.M., Sanz J., Orus R., Garcia-Rigo A., Feltens J., Komjathy A., Schaer S.C., Krankowski A., The IGS VTEC maps: A reliable source of ionospheric information since 1998, “Journal of Geodesy” 2009, vol. 83 (3–4), https://doi.org/10.1007/s00190-008-0266-1.
Hoque M.M., Jakowski N., Higher order ionospheric effects in precise GNSS positioning, “J. Geod.” 2007, vol. 81, https://doi.org/10.1007/s00190-006-0106-0.
Hubert G., Aubry S., Study of the impact of past extreme solar events on the modern air traffic, “Space Weather” 2021, vol. 19, e2020SW002665, https://doi.org/10.1029/2020SW002665.
ICAO, Annex 3 to the Convention on International Civil Aviation-Meteorological Service for International Air Navigation, Technical report, Canada, Montréal 2018.
Kauristie K., Andries J., Beck P., Berdermann J., Berghmans D., Cesaroni C., de Donder E., de Patoul J., Dierckxsens M., Doornbos E., et al., Space Weather Services for Civil Aviation—Challenges and Solutions, “Remote Sens.” 2021, vol. 13, https://doi.org/10.3390/rs13183685.
Keshin M., A new algorithm for single receiver DCB estimation using IGS TEC maps, “GPS Solut.” 2012, vol. 16, http://doi.org/10.1007/s10291-011-0230-z.
Liu Z., Li Y., Guo J., Li F., Influence of higher-order ionospheric delay correction on GPS precise orbit determination and precise positioning, “Geod. Geodyn.” 2016, vol. 7, http://doi.org/10.1016/j.geog.2016.06.005.
Marque C., Klein K.L., Monstein C., Opgenoorth H., Pulkkinen A., Buchert S., Krucker S., van Hoof R., Thulesen P., Solar radio emission as a disturbance of aeronautical radionavigation, “J. Space Weather Space Clim.” 2018, vol. 65, http://doi.org/10.1051/swsc/2018029.
Thébault E., Finlay C.C., Beggan C.D., Alken P., Aubert J., Barrois O., Canet E., International geomagnetic reference field: The 12th generation, “Earth, Planets and Space” 2015, vol. 67(1), https://doi.org/10.1186/s40623-015-0228-9.
Yankiv-Vitkovska L., Savchuk S., Monitoring the Earth Ionosphere by Listening to GPS Satellites. In: Knowledge Discovery in Big Data from Astronomy and Earth Observation, AstroGeoInformatics. Book, ed. P. Škoda, A. Fathalrahman, 2020, https://doi.org/10.1016/C2018-0-02187-8.
Zhang W., Zhang D.H., Xiao Z., The influence of geomagnetic storms on the estimation of GPS instrumental biases, “Ann Geophys” 2009, vol. 27, https://doi.org/10.5194/angeo-27-1613-2009.
Zhang Y., Wu F., Kubo N., Yasuda A., TEC measurement by single dual-frequency GPS receiver, Proceedings of the 2003 International Symposium on GPS/GNSS, Tokyo, Japan, 15–18 November 2003.
Zus F., Deng Z., Wickert J., The impact of higher-order ionospheric effects on estimated tropospheric parameters in Precise Point Positioning, “Radio Sci.” 2017, vol. 52.
GPS-TEC RINEX analysis website, https://seemala.blogspot.com/search/label/GPS-TEC%20RINEX%20analysis [access: 25.08.2023].
Precise products, ftp://igs.gnsswhu.cn/pub/whu/phasebias/ [access: 25.08.2023].