Main Article Content

Anna Michalska
Daniel Michalski
Stepan Savchuk


The reliability of the military equipment determines the possibility of the success of the mission. This paper focuses on identifying damage to Unmanned Aerial Vehicles during their operation. The research problem was expressed by the question: which UAV elements are most often damaged, and what causes it. The research is based on the analysis of technical documents, an electronic damage archiving system, and manufacturer documentation. These studies were complemented by empirical research conducted at the 12th Unmanned Aerial Vehicles Base in Mirosławiec, Poland. The initial phase involved identifying damages affecting the operation of Unmanned Aerial Vehicles. Subsequently, the reliability measure was determined for the repairable two-state object, excluding repair time.


Download data is not yet available.

Article Details

How to Cite
Michalska, A., Michalski, D., & Savchuk , S. . (2023). RELIABILITY OF UNMANNED AERIAL VEHICLES: WINGLETS’ ISSUE. Aviation and Security Issues, 3(1), 353–367.


Bernat, P. (2018). Unmanned Aerial Vehicles and Their Growing Role in Shaping Military Doctrine. Security Forum, 2(1), 77-90. DOI: 10.26410/SF_1/18/7.

Bogusz, D. (2023). Porty lotnicze i morskie, Lotnicza Akademia Wojskowa, DOI 10.55676/66514-68-3.

Chen, W., Liu, J., Guo, H., & Kato, N. (2020). Toward robust and intelligent drone swarm: Challenges and future directions. IEEE Network, 34(4), 278-283

Doroftei, D., De Cubber, G., & De Smet, H. (2021). Reducing drone incidents by incorporating human factors in the drone and drone pilot accreditation process. In Advances in Human Factors in Robots, Drones and Unmanned Systems: Proceedings of the AHFE 2020 Virtual Conference on Human Factors in Robots, Drones and Unmanned Systems, July 16-20, 2020, USA (pp. 71-77). Springer International Publishing.

Fuhrmann, M., & Horowitz, M. C. (2017). Droning on: Explaining the proliferation of unmanned aerial vehicles. International organization, 71(2), 397-418.

Gao, M., Hugenholtz, C. H., Fox, T. A., Kucharczyk, M., Barchyn, T. E., & Nesbit, P. R. (2021). Weather constraints on global drone flyability. Scientific Reports, 11(1), 12092.

Kaleta R., Niczyj J., Bryzek A., Zarządzanie procesami eksploatacyjnymi z wykorzystaniem systemów informatycznego wsparcia eksploatacji statków powietrznych. Autobusy. 2016

Kaleta R., Witoś M., Zieja M., Systemy informatyczne wsparcia Lotnictwa Sił Zbrojnych RP, „Logistyka”, nr 6, 2014.

Kaleta R., Zieja M., Bryzek A., Informatyczne wspomaganie procesu eksploatacji wojskowych statków powietrznych. TRANSCOMP – XIV International Conference Computer Systems Aided Science. Industry and Transport.6-9.12.2010 Zakopane. s. 1291-1300. Logistyka 6/2010.

Lahmeri, M. A., Kishk, M. A., & Alouini, M. S. (2021). Artificial intelligence for UAV-enabled wireless networks: A survey. IEEE Open Journal of the Communications Society, 2, 1015-1040

Michalska, A. (2019). Introduction to Reliability Tests of Unmanned Aircraft Used in the Armed Forces of the Republic of Poland. Safety & Defense, 5(2), 54-61

Ministerstwo Infrastruktury, Polski Instytut Ekonomiczny, Biała Księga Rynku Bezzałogowych Statków Powietrznych, Warszawa, luty 2019

Maziar A., Classification of unmanned aerial vehicles, Mech Eng 2016

Ocena stanu realizacji Planu Modernizacji Technicznej Sił Zbrojnych RP na lata 2013–2022, 2017–2026 i 2021–2035 według stanu na dzień 13 października 2019

Petritoli, E., Leccese, F., & Ciani, L. (2018). Reliability and maintenance analysis of unmanned aerial vehicles. Sensors, 18(9), 3171. doi: 10.3390/s18093171. PMID: 30235897; PMCID: PMC6165073.

Zieja, M., Smoliński, H., & Gołda, P. (2015). Information systems as a tool for supporting the management of aircraft flight safety. Archives of Transport, 36(4), 67-76.