QUALITY ASSESSMENT OF SATELLITE LASER RANGING STATIONS OPERATING IN 2020

Main Article Content

Stanisław Schillak
Paweł Lejba
https://orcid.org/0000-0003-1695-3298
Piotr Michałek
Adrian Smagło
https://orcid.org/0000-0002-5920-6957

Abstract

The paper assesses the quality of satellite laser ranging stations that were operational in 2020. The assessment is based on the results obtained from the LAGEOS-1 and LAGEOS-2 satellites between 2011 and 2020. In 2020, 41 SLR stations conducted laser observations on both LAGEOS satellites. Out of these stations, 20 had been making observations for ten years, while some stations started their observations during this period, resulting in a shorter observation period. NASA's GEODYN-II orbital software was used to compute the satellite orbits for fifteen core stations. The accuracy of the observations from each station was evaluated by determining the stability of the designated coordinates (3DRMS) in the International Terrestrial Reference Frame 2020. The results show that 16 stations achieved accuracy ranging from 4 mm to 10 mm, 17 stations between 10 mm and 15 mm, and 8 stations above 15 mm. Similarly, the standard deviation of the determined coordinates ranged from 1.0 mm to 2.6 mm, from 3.0 mm to 4.0 mm, and above 4.0 mm, respectively. The discussion focuses on the reasons for the inadequate accuracy in determining the coordinates for most stations. These reasons include a lack of sufficient normal points for most stations, a significant random scatter of normal points in the orbit, and insufficient long-term stability of systematic deviations. It is important to note that the results for both LAGEOS satellites are highly consistent.

Downloads

Download data is not yet available.

Article Details

How to Cite
Schillak, . S., Lejba, P., Michałek, P., & Smagło, A. (2023). QUALITY ASSESSMENT OF SATELLITE LASER RANGING STATIONS OPERATING IN 2020. Aviation and Security Issues, 4(2). https://doi.org/10.55676/asi.v4i2.62
Section
Articles
Author Biographies

Paweł Lejba, Space Research Center Polish Academy of Sciences

Borowiec Astrogeodynamic Observatory

Observatory Head

Piotr Michałek, Space Research Center Polish Academy of Sciences

Borowiec Astrogeodynamic Observatory

Adrian Smagło, Space Research Center Polish Academy of Sciences

Borowiec Astrogeodynamic Observatory

References

Altamimi Z., Rebischung P., Collilieux X., Métivier L., Chanard K., ITRF2020 [Data set]. IERS ITRS Center Hosted by IGN and IPGP 2022, https://doi.org/10.18715/IPGP.2023.LDVIOBNL

Altamimi Z., Rebischung P., Collilieux X., Métivier L., Chanard K., ITRF2020: an augmented reference frame refining the modeling of nonlinear station motions, "J Geod" 2023, 97(47). https://doi.org/10.1007/s00190-023-01738-w

Borkowski K.M., Accurate algorithms to transform geocentric to geographic coordinates, "Bull. Geod." 1989, 63, 50–56.

Degnan J., Milimeter Accuracy Satellite Laser Ranging: a Review, "Contribution of Space Geodesy for Geodynamics: Technology Geodynamics" 1993, 25, 133-162.

Drożdżewski M., Sośnica K., Satellite laser ranging as a tool for the recovery of tropospheric gradients, "Atmospheric Research" 2018, 212, 33-42. DOI: 10.1016 / j.atmosres .2018.04.028

Drożdżewski M., Sośnica K., Zus F., Balidakis K.,Troposphere delay modeling with horizontal gradients for satellite laser ranging, "J. Geodesy" 2019, 93, 1853-1866. DOI: 0.1007 / s00190 -019-01287-1

Drożdżewski M., Sośnica K., Tropospheric and range biases in Satellite Laser Ranging, "J. Geodesy" 2021, 95, 100-117. DOI: 10.1007 / s00190-021-01554-0

McCarthy D.D., Petit G., (Eds.), IERS Conventions (2003), IERS Technical Note No. 32. International Earth Rotation and Reference Systems Service, Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, Germany, 2004.

Mendes V.B., Prates G., Pavlis E.C., Pavlis D.E., Langley R.B., Improved mapping functions for atmospheric refraction in SLR, "Geophys. Res. Lett." 2002, 29, 10, 1414, 53-1–53-4. https://doi.org/10.1029/2001GL014394

Mendes V.B., Pavlis E.C., High-accuracy zenith delay prediction at optical wavelengths, "Geophys. Res. Lett." 2004, 31, L14602. https://doi.org/10.1029/2004GL020308

Pavlis D.E., Luo S., Dahiroc P., et al., GEODYN II System Description, Hughes STX Contractor Report, Greenbelt, Maryland, USA, 1998.

Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K., An Earth Gravitational Model to Degree 2160:EGM2008. Presented at the 2008 General Assembly of the European Geoscience Union, Vienna, Austria, 13 April 2008.

Pearlman M.R., Degnan J.J., Bosworth J.M., The International Laser Ranging Service, "Adv. Space Res." 2002, 30(2), 135–143. https://doi.org/10.1016/S0273-1177(02)00277-6

Pearlman M.R., Noll C.E., Pavlis E.C., Lemoine F.G., Combrink L., Degnan J.D., Kirchner G., Schreiber U., The ILRS: approaching 20 years and planning for the future, "J. Geodesy" 2019, 93, 2161-2180. DOI:10.1007/s00190-019-01241-1

Petit G., Luzum B., (Eds.), IERS Conventions, IERS Technical Note No. 36. International Earth Rotation and Reference Systems Service, Bundesamt für Kartographie und Geodäsie, Frankfurt am Main, Germany, 2010.

Ray R.D., A global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99.2, "NASA/TMm1999-200478" 1999, 1-66. 19990089548.pdf

Schillak S., Satarowska A., Sankowski D., Michałek P., Analysis of the Results Determining the Positions and Velocities of Satellite Laser Ranging Stations during Earthquakes in 2010–2011, Remote Sens. 2023, 15, 3659.

https://doi.org/ 10.3390/rs15143659

Standish E.M., Newhall X.X., Williams J.G., Folkner W.F., JPL Planetary and Lunar Ephemerides DE403/LE403, "JPL IOM" 1995, 31, 10-127.

Torrence M.H., Klosko S.M., Christodoulidis D.C., The construction and testing of normal point at Goddard Space Flight Center, In Proceedings of 5th International Workshop on Laser Ranging Instrumentation, Herstmonceux, UK, 10 September 1984, 506–516. https://ilrs.gsfc.nasa.gov/about/reports/workshop/lw05.html

Articles from the Internet:

CDDIS (2009) SLR and GPS (and Plate Tectonic and Earthquakes), NASA. Available online: http://cddis.nasa. gov/docs/2009/HTS_0910.pdf (accessed on 11 November 2023).

DGFI (2023) DGFI-TUM ILRS Analysis Centre. Available online:

https://www.dgfi.tum.de/en/international-services/ilrs/ (accessed on 15 September 2023).

Geoscience Hitotsubashi: Multi-Satellite Bias Analysis Report. Available online:

https://geo.science.hit-u.ac.jp/slr/bias/ (accessed on 15 September 2023).

ILRS ASC Product and Information Server. Available online:

http://geodesy.jcet.umbc.edu/ILRS_AWG_MONITORING/ (accessed on 10 October 2023).

ILRS Monthly/Quarterly Global Performance Report Card. Available online: https://ilrs.gsfc.nasa.gov/network/system_performance/global_report_cards/quarterly/ (accessed on 10 October 2023).

ITRF2020- IGN. Available on line:

https://itrf.ign.fr/en/solutions/ITRF2020 (accessed on 20 September 2023).

NASA (2014) How Satellite Laser Ranging got its start 50 years ago. Available online:

https://www.nasa.gov/content/goddard/laser-ranging-50-years (accessed on 11 November 2023).

SLRF2020 Available online: https://ilrs.gsfc.nasa.gov/docs/2023/SLRF2020_POS+VEL_2023.10.02.snx

(accessed on 14 November 2023).

The ILRS contribution to ITRF2020. E. Pavlis (GESTAR II/UMBC & NASA Goddard 61A), V. Luceri (e-GEOS S.p.A., ASI/CGS) https://itrf.ign.fr/docs/solutions/itrf2020/The_ILRS_contribution_to_ITRF2020_description_2022.09.23.pdf

Zimmerwald: ILRS Combined Range Bias Report. Available online:

http://ftp.aiub.unibe.ch/slr/summary_report.txt (accessed on 15 September 2023).