ANALYSIS OF THE INFLUENCE OF THE OBJECT’S ELEVATION ON LASER MEASUREMENTS OBTAINED IN BOROWIEC IN 2016–2023

Main Article Content

Adrian Smagło
https://orcid.org/0000-0002-5920-6957
Mateusz Matyszewski
https://orcid.org/0000-0003-1180-8497
Paweł Lejba
https://orcid.org/0000-0003-1695-3298

Abstract

This paper presents an analysis of how an object’s position above the horizon affects laser measurements obtained in laser station in Borowiec. The objects used for this analysis were active satellites from LEO (Low Earth Orbit) and MEO (Medium Earth Orbit) regimes, as well as space debris from LEO regime. The data used for this analysis spanned from the second half of 2016 to the first half of 2023. The results of tests performed at the BORL station indicate that for LEO objects, it is least effective to make observations when the object is close to the zenith, i.e. 80–90 degrees above the horizon. The highest returns are obtained when the object is at an elevation of 20–39 degrees. These results apply to both active satellites and space debris objects from the LEO regime. In the case of MEO satellites the highest returns are received when the object is at an elevation of 50–79 degrees.

Downloads

Download data is not yet available.

Article Details

How to Cite
Smagło, . A., Matyszewski, M., & Lejba, P. (2023). ANALYSIS OF THE INFLUENCE OF THE OBJECT’S ELEVATION ON LASER MEASUREMENTS OBTAINED IN BOROWIEC IN 2016–2023. Aviation and Security Issues, 4(2). https://doi.org/10.55676/asi.v4i2.58
Section
Articles

References

An Z., Shao K., Gu D., Wei C., Xu Z., Tong L., Zhu J., Wang J., Liu D., Precise Orbit Determination and Accuracy Analysis for BDS-3 Satellites Using SLR Observations, “Remote Sensing” 2023, vol. 15(7), DOI: https://doi.org/10.3390/rs15071833.

Degnan J.J., A Tutorial on Retroreflectors and Arrays Used in Satellite and Lunar Laser Ranging, “Photonics” 2023, vol. 10(11), DOI: https://doi.org/10.3390/photonics10111215.

Fujiwara Y., Mokuno M., Jono T., Yamawaki T., Arai K., Toyoshima M., Kunimori H., Sodnik Z., Bird A., Demelenne B., Optical inter-orbit communications engineering test satellite (OICETS), “Acta Astronautica” 2007, vol. 61, DOI: https://doi.org/10.1016/j.actaastro.2007.01.021.

Jagoda M., Rutkowska M., Lejba P., Katzer J., Obuchovski R., Šlikas D., Satellite Laser Ranging for Retrieval of the Local Values of the Love h2 and Shida l2 Numbers for the Australian ILRS Stations, “Sensors” 2020, vol. 20(23), DOI: https://doi.org/10.3390/s20236851.

Kucharski D., Kirchner G., Bennett J.C., Lachut M., Sośnica K., Koshkin N., Shakun L., KoidlF., Steindorfer M., Wang P., Fan C., Han X., Grunwaldt L., Wilkinson M., Rodriguez J., Bianco G., Vespe F., Catalán M., Salmins K., del Pino J.R., Lim H.C., Park E., Moore C., Lejba P.,Suchodolski T., Photon Pressure Force on Space Debris TOPEX/Poseidon Measured by Satellite Laser Ranging, “Earth and Space Science” 2017, vol. 4(10), DOI: https://doi.org/10.1002/2017EA000329.

Kucharski D., Kirchner G., Jah M.K., Bennett J.C., Koidl F., Steindorfer M.A., Wang P., Full attitude state reconstruction of tumbling space debris TOPEX/Poseidon via light-curve inversion with Quanta Photogrammetry, “Acta Astronautica” 2021, vol. 187, DOI: https://doi.org/10.1016/j.actaastro.2021.06.032.

Lejba P., Orbit determination of chinese rocket bodies from the picosecond full-rate laser measurements, “Artificial Satelliwtes” 2023, vol. 58(4), DOI: https://doi.org/10.2478/arsa-2023-0010, accepted for publication.

Lejba P., Suchodolski T., Michałek P., Bartoszak J., Schillak S., Zapaśnik S., First laser measurements to space debris in Poland, “Advances in Space Research” 2018, vol. 61(10), DOI: https://doi.org/10.1016/j.asr.2018.02.033.

Lejba P., Suchodolski T., Schillak S., Bartoszak J., Michałek P., Zapaśnik S., New face of the Borowiec Satellite Laser Ranging Station, Proceedings of the 20th International Workshop on Laser Ranging, Potsdam 2016.

Maciuk K., The applications of GNSS systems in logistics, “Budownictwo i Architektura” 2018, vol. 17(3), DOI: https://doi.org/10.24358/Bud-Arch_18_173_13.

Mertikas S., Tripolitsiotis A., Donlon C., Mavrocordatos C., Féménias P., Borde F., Frantzis X., Kokolakis C., Guinle T., Vergos G., Tziavos I.N., Cullen R., Jason-3 Using Transponder and Sea-Surface Calibrations with FRM Standards, “Remote Sensing” 2020, vol. 12(16), DOI: https://doi.org/10.3390/rs12162642.

Milowicki G.V., Johnson-Freese J., Strategic Choices: Examining the United States Military Response to the Chinese Anti-Satellite Test, “Astropolitics The Internatopnal Journal of Space Politics and Policy” 2008, vol. 6(1), DOI: https://doi.org/10.1080/14777620801907913.

Pearlman M., Arnold D., Davis M., Barlier F., Biancale R., Vasiliev V., Ciufolini I., Paolozzi A., Pavlis E.C., Sośnica K., Bloβfeld M., Laser geodetic satellites: a high-accuracy scientific tool, “Journal of Geodesy” 2019, vol. 93, DOI: https://doi.org/10.1007/s00190-019-01228-y.

Pearlman M.R., Noll C.E., Pavlis E.C., Lemoine F.G., Combrink L., Degnan J.J., Kirchner G., Schreiber U., The ILRS: approaching 20 years and planning for the future, “Journal of Geodesy” 2019, vol. 93, DOI: https://doi.org/10.1007/s00190-019-01241-1.

Schillak S., Satarowska A., Sankowski D., Michałek P., Analysis of the Results Determining the Positions and Velocities of Satellite Laser Ranging Stations during Earthquakes in 2010-2011, “Remote Sensing” 2023, vol. 15(14), DOI: https://doi.org/10.3390/rs15143659.

Smagło A., Lejba P., Schillak S., Suchodolski T., Michałek P., Zapaśnik S., Bartoszak J., Measurements to Space Debris in 2016–2020 by Laser Sensor at Borowiec Poland, “Artificial Satellites” 2022, vol. 56(4), DOI: https://doi.org/10.2478/arsa-2001-0009.

Strugarek D., Sośnica K., Arnold D., Jäggi A., Zajdel R., Bury G., Drożdżewski M., Determination of Global Geodetic Parameters Using Satellite Laser Ranging Measurements to Sentinel-3 Satellite, “Remote Sensing” 2019, vol. 11(19), DOI: https://doi.org/10.3390/rs11192282.

Strugarek D., Sośnica K., Zajdel R., Bury G., D., Detector-specific issues in Satellite Laser Ranging to Swarm-A/B/C satellites, “Measurement” 2021, vol. 182, DOI: https://doi.org/10.1016/j.measurement.2021.109786.

Zheng Y., Zheng F., Yang C., Nie G., Li S., Analyses of GLONASS and GPS+GLONASS Precise Positioning Performance in Different Latitude Regions, “Remote Sensing” 2022, vol. 14(18), DOI: https://doi.org/10.3390/rs14184640.

Internet sources

CELESTRACK, https://celestrak.org/satcat/boxscore.php [access: 9.11.2023].

Current ILRS, https://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/index.html [access: 20.11.2023].

GLONASS, https://ilrs.gsfc.nasa.gov/missions/satellite_missions/current_missions/g140_general.html [access: 20.11.2023].

Past ILRS, https://ilrs.gsfc.nasa.gov/missions/satellite_missions/past_missions/index.html [access: 20.11.2023].

Most read articles by the same author(s)