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APPLICATION OF MARKOV CHAINS, MTBF  
AND MACHINE LEARNING IN AIR  
TRANSPORT RELIABILITY

ZASTOSOWANIE ŁAŃCUCHÓW MARKOWA, WSKAŹNIKA MTBF I UCZENIA 
MASZYNOWEGO W NIEZAWODNOŚCI TRANSPORTU LOTNICZEGO

Streszczenie

Niezawodność transportu lotniczego jest klu-
czowym aspektem w zwiększaniu zadowolenia 
pasażerów, łączności sieciowej, bezpieczeństwa, 
zrównoważenia środowiskowego i wydajności 
operacyjnej. W branży transportu lotniczego 
niezawodność krytycznych komponentów i sys-
temów odgrywa ważną rolę w zapewnieniu bez-
pieczeństwa i wydajności systemów transportu 
lotniczego. Niniejszy artykuł analizuje integrację 
zaawansowanych metodologii, w tym łańcu-
chów Markowa, analizy średniego czasu między 
awariami (MTBF) i uczenia maszynowego, jako 
obiecujących sposobów poprawy niezawodno-
ści. Ponadto, niniejszy artykuł zawiera przegląd 
danych eksploatacyjnych, wgląd w przyszłe per-
spektywy i dyskusje na temat wyzwań, impli-
kacji regulacyjnych i współpracy branżowej, co 
dodatkowo przyczynia się do kompleksowego 
zrozumienia zastosowania uczenia maszynowego 
i analizy MTBF w niezawodności transportu lot-
niczego. Różnorodne zastosowania i ewoluujące 
trendy w konserwacji predykcyjnej podkreślają 
jej znaczenie w kształtowaniu przyszłości praktyk 
konserwacyjnych w branży transportu lotniczego.
Słowa kluczowe: niezawodność, transport lotni-
czy, łańcuchy Markova, MTBF, uczenie maszynowe

Abstract

Air transport reliability is a critical aspect in en-
hancing passenger satisfaction, network con-
nectivity, safety, environmental sustainability, 
and operational efficiency. In the air transport 
industry, the reliability of critical components 
and systems plays an important role in en-
suring the safety and efficiency of air transport 
systems. This article explores the integration 
of advanced methodologies, including Mar-
kov chains, mean time between failure (MTBF) 
analysis, and machine learning, as promising 
ways to improve the reliability. In addition, this 
article provides an overview of in-service data 
provide insights into prospects and discussions 
of challenges, regulatory implications, and indu-
stry collaboration further contribute to a com-
prehensive understanding of the application 
of machine learning and MTBF analysis in air 
transport reliability. The diverse applications 
and evolving trends in predictive maintenance 
underscore its importance in shaping the future 
of maintenance practices in the air transporta-
tion industry.

Keywords: reliability, air transport, Markov  
chain, MTBF, machine learning
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1. INTRODUCTION

1.1. BACKGROUND

The critical aspect of the aviation industry is reliability, which affects safety, efficiency, 
and passenger experience. At its core, aviation reliability ensures that aircraft can per-
form their intended operations safely and without unnecessary delays. This involves 
the mechanical integrity of the aircraft, the precision of flight operations, reliable 
schedules, and effective emergency procedures. High reliability is crucial to maintain-
ing public confidence in air travel, minimising operational costs due to delays and 
unscheduled maintenance, and meeting stringent regulatory standards. It plays a key 
role in the protection of human life, highlighting its paramount importance.

As air travel continues to grow, the industry prioritises improving reliability through 
technological innovation, rigorous maintenance practices, and advanced operational 
protocols. This commitment not only improves airline competitiveness but also en-
sures that air transport remains one of the safest modes of travel worldwide. Given 
the increasing congestion in air traffic and rising passenger expectations, air trans-
port systems must be both efficient and reliable. Advanced analytical methods such 
as Markov models, machine learning, and time-between-failure analysis are vital to 
monitoring, predicting, and optimising the performance and reliability of air trans-
port systems. These methods allow for comprehensive analysis of historical and cur-
rent data, enabling the identification and resolution of potential issues before they 
affect operations, significantly contributing to enhanced reliability standards in the 
aviation industry.

1.2. IMPORTANCE OF AIRCRAFT RELIABILITY FOR AIR TRANSPORT 
RELIABILITY

Aircraft reliability is a crucial aspect of the aviation industry, influencing the efficien-
cy, safety, and effectiveness of air transport operations. The consistently acknowl-
edges the paramount importance of aircraft reliability. For instance, Knotts1 noted 
that maintenance activities and their associated downtime significantly impact dis-
patch reliability and direct maintenance costs, affecting the operational efficiency of 
airlines. Fan et al.2 also cited dispatch reliability as a critical metric for evaluating the 
reliability and operational efficiency of civil aircraft, emphasising its role in determin-
ing the performance of individual aircraft and entire fleets.

Another author3 emphasized the vital nature of aircraft reliability for enhancing 
performance and survivability, particularly in the reliability of critical components 
like aeroengine rotors, which directly affect overall aircraft performance and safety. 

1 Knotts, ‘Civil Aircraft Maintenance and Support Fault Diagnosis From a Business Perspective’.
2 Fan, Zhao, and Jiao, ‘Dispatch Reliability of Civil Aviation Simulation Based on Generalized Stochastic 

Petri Nets (GSPN)’.
3 Liu et al., ‘Vibration Reliability Analysis of Aeroengine Rotor Based on Intelligent Neural Network Mo-

deling Framework’.
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Another publication4 was highlighted that reliable predictions of aircraft turnaround 
times are essential for improving the punctuality and operational efficiency of air-
line operations. Furthermore, another researcher underscored the importance of 
comprehensive maintenance technician training programmes to ensure aircraft 
safety, highlighting their role in maintaining high safety standards within air trans-
port operations.

In conclusion, the reliability of aeronautical systems, components and operations 
is fundamental to the success and safety of air transport operations. By striving for 
maximum reliability, airlines can significantly improve operational efficiency and 
punctuality, maintain high safety standards, and provide customers with a seamless 
and hassle-free air travel experience.

1.3. OVERVIEW OF ANALYTICAL MODELS IN AIR TRANSPORT RELIABILITY

Analytical models in air transport reliability encompass a diverse range of method-
ologies that are utilised to analyse and optimise various aspects of air transport sys-
tems. These models play a crucial role in understanding network structures, fault 
tolerance, and operational parameters within the air transport domain. Several types 
of analytical models have been applied in the context of air transport reliability, each 
serving specific purposes and providing valuable insights into system performance.

In Poland, notable research has been conducted by Prof. Lewitowicz5 and Prof. 
Żurek6, who emphasise the importance of reliability in aviation. Two main ap-
proaches to reliability theory are evident: the mathematical approach, based on 
models created from data, and the engineering approach. The mathematical ap-
proach relies heavily on probability theory and mathematical statistics to address 
many reliability issues, despite technological advances and rigorous manufacturing 
controls7. Reliability theory, using stochastic processes, is well-documented in both 
Polish and international literature, with Prof. Grabski8 notably using Markov and 
semi-Markov models.

In the realm of air transport reliability, various analytical models are utilised, in-
cluding mean time between failures (MTBF) calculations, Markov chain modelling, 
and machine learning algorithms. Gupta et al.9 employed MTBF calculations and 
Markov chain modelling to analyse the reliability of optical wireless communication 

4 Schultz and Reitmann, ‘Consideration of Passenger Interactions for the Prediction of Aircraft Boarding 
Time’.

5 Lewitowicz, Podstawy eksploatacji statków powietrznych; Lewitowicz, ‘Uncertainty and Dependability 
of the Risk Model Applicable to Operation of Aircrafts’.

6 Żurek, ‘Review of the safety evaluation methods in aviation’; Żurek, Tomaszek, and Zieja, ‘Analysis of 
Structural Component’s Lifetime Distribution Considered from the Aspect of the Wearing with the 
Characteristic Function Applied’.

7 Sadraey, ‘Aircraft Design: A Systems Engineering Approach’.
8 ‘Semi-Markov Processes Applications in System Reliability and Maintenance - Franciszek Grabski 

w KrainaKsiazek.Pl’.
9 Gupta, Chandra, and Dixit, ‘Reliability Analysis of a Fault-Tolerant Full-Duplex Optical Wireless Com-

munication Transceiver’.
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transceivers. Wang10 emphasised the significance of MTBF in the analysis of fatigue 
reliability of structural components. Furthermore, machine learning models have 
been increasingly integrated into air transport reliability studies. For example, Sala-
mi11 developed machine learning classifiers to predict historical data on dengue im-
portation from European countries, demonstrating the application of machine learn-
ing in forecasting air transport-related phenomena. These diverse analytical models, 
ranging from traditional reliability calculations to advanced machine learning algo-
rithms, are crucial for evaluating and enhancing air transport reliability, thereby en-
suring safe and efficient operations in the aviation industry.

In addition to the models presented below, various analytical models are crucial for 
evaluating air transport reliability. Percolation theory analyses network reliability 
and fault tolerance by representing aviation structures as random graphs12. Queu-
ing and network decomposition models study delay propagation within air transport 
networks by decomposing them into queuing components13. Uncertainty transfor-
mation models convert quantitative data into qualitative assessments, enhancing 
reliability evaluation14. Additionally, Monte Carlo methods determine the reliabili-
ty of complex technical systems by using random variable concepts, and statistical 
methods. Together, these models provide comprehensive frameworks for assessing 
network robustness, delay factors, and operational parameters, ensuring the safe 
and efficient operation of air transport systems.

1.4. OBJECTIVES OF THE ARTICLE

Reliability of air transport systems is critical to ensuring the safety, efficiency and 
overall success of the aviation industry. In response to continued advances in tech-
nology and, this article explores the integration of advanced methodologies, includ-
ing Markov chains, mean time between failure (MTBF) analysis and machine learning, 
as promising ways to improve the reliability of critical components and systems. The 
following chapters provide a comprehensive analysis of these advanced techniques 
and highlighting their role in ensuring passenger safety, operational efficiency, and 
customer satisfaction. Analysis of in-service data provides insights into prospects and 
discussions of challenges, regulatory implications, and industry collaboration further 
contribute to a comprehensive understanding of the application of Markov chains, 
MTBF analysis, and machine learning in air transport reliability.

10 Wang et al., ‘Fatigue Reliability Analysis and Design for Structural Components in Quasi-One-Shot 
Device’.

11 Salami et al., ‘Predicting Dengue Importation Into Europe, Using Machine Learning and Model-Agno-
stic Methods’.

12 Lesko, Aleshkin, and Zhukov, ‘Reliability Analysis of the Air Transportation Network When Blocking 
Nodes and/or Connections Based on the Methods of Percolation Theory’.

13 Wang et al., ‘Fatigue Reliability Analysis and Design for Structural Components in Quasi-One-Shot 
Device’.

14 Li, Zhang, and Cheng, ‘Reliability Analysis of an Air Traffic Network: From Network Structure to Trans-
port Function’.
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2. MARKOV CHAINS IN AIR TRANSPORT RELIABILITY

2.1. PRINCIPLES OF MARKOV CHAINS

Markov chains, which are stochastic processes that transition between states based 
on probabilistic rules, have been extensively studied in various fields, including statis-
tics, computer science, and linguistics15. Advanced concepts such as large deviation 
rate functions16, generalised crested products17, and Markov-modulated diffusion 
processes18 have emerged from these studies. Research has also explored the struc-
ture and eigenvalues of heat-bath Markov chains and developed frameworks like 
the extended Laplace principle for empirical measures. The study of measure-valued 
Markov chains in Bayesian non-parametrics has enhanced their flexibility. In general, 
Markov chains have significantly advanced scientific disciplines, providing deep in-
sight into stochastic processes and their applications.

Markov processes are essential to model the dynamic behaviour of complex aviation 
systems and assess their reliability19. They provide a robust framework for reliability 
evaluation20, particularly in small sample sizes and dynamic conditions21. Advanced 
applications, such as combining Markov processes with block diagrams, have proven 
effective for rapid and accurate reliability assessments of systems like electrical pow-
er generation, relevant to aviation22. Furthermore, Markov processes are flexible in 
analysing the reliability of control systems, which is essential for safe aviation opera-
tions23. The versatility and depth of Markov processes in various domains, including 
semi-Markov models for broader reliability indexes, underscore their critical role in 
enhancing aviation safety and operational efficiency24.

15 Levin, Peres, and Wilmer, ‘Markov Chains and Mixing Times’; Meyn, Tweedie, and Glynn, ‘Markov 
Chains and Stochastic Stability’; Al-Anziand and AbuZeina, ‘A Survey of Markov Chain Models in Lin-
guistics Applications’.

16 Vidyasagar, ‘An Elementary Derivation of the Large Deviation Rate Function for Finite State <scp>M</
Scp>arkov Chains’.

17 D’Angeli and Donno, ‘Generalized Crested Products of Markov Chains’.
18 Huang, Ng, and Chan, ‘Wind Shear Prediction from Light Detection and Ranging Data Using Machine 

Learning Methods’.
19 Oszczypała, Konwerski, Ziółkowski, and Małachowski, ‘Reliability analysis and redundancy optimiza-

tion of k-out-of-n systems with random variable k using continuous time Markov chain and Monte 
Carlo simulation’. 

20 Szkutnik-Rogoż, Małachowski, and Ziołkowski, ‘An innovative computational algorithm for modelling 
technical readiness coefficient: A case study in automotive industry’.

21 Wang and Cheng, ‘A Study on Bayesian Method for Reliability Evaluation of Small Sample Size Aviation 
Support Systems’.

22 Tawfiq et al., ‘Reliability Assessment for Electrical Power Generation System Based on Advanced Mar-
kov Process Combined With Blocks Diagram’.

23 Wang et al., ‘Reliability Analysis for a Hypersonic Aircraft’s Wing Spar’.
24 D’Amico, Janssen, and Manca, ‘Semi-Markov Reliability Models With Recurrence Times and Credit 

Rating Applications’.
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2.2. CASE STUDIES – REAL-WORLD EXAMPLES OF MARKOV CHAIN    
   APPLICATIONS

The study of the readiness of aircraft to perform flight tasks should begin with a strict 
definition of the operating states in which the tested machine may be located, along 
with a determination of whether these states meet all readiness conditions. Al-
though this model is applied specifically to transport aircraft, it is important to note 
that its underlying principles can be adapted and applied to any transport system, re-
flecting its versatility and applicability across different modes of transportation. This 
adaptability underscores the potential for broader application of the model, offering 
insight into the operational readiness and efficiency of various transport systems be-
yond just aircraft.

The aircraft can be in the following states:
 – S1 – Waiting before launching – The aircraft is in a state of readiness for flight;
 – S2 – Pre-flight maintenance – replenishment of fuel, operating fluids, and check 

of the aircraft by technicians carried out each time before the start of the flight 
(according to the provisions of the “norms of current maintenance” the duration 
of the service is 15 minutes);

 – S3 – Flight – The time from the start of the engine with the intention of perform-
ing an air task to its shutdown after taxiing;

 – S4 – Post-flight maintenance – replenishment of fuel, operating fluids, and secur-
ing the aircraft, carried out after the last flight of each flying day (according to the 
provisions of the “time standards for the performance of ongoing maintenance” 
the duration of the service is 30 minutes);

 – S5 – Pilot’s takeover of the aircraft – control by the pilot of the efficiency of the air-
craft each time before the flight (the duration of the takeover was set at 10 min-
utes based on the observation of the pilots’ behaviour);

 – S6 – Aircraft malfunction: After diagnosing the malfunction in the previous states, 
the aircraft is in the flight malfunction state. The next step is to move to the S-7 
state;

 – S7 – Operation – During this state, the readiness and efficiency of the aircraft are 
restored after a malfunction is detected in previous states;

 – S8 – Awaiting Flight – Time when no activities are performed on the aircraft, how-
ever, it is ready to perform an aviation task.

In addition to carefully analysing the states in which the aircraft may be in, attention 
should also be paid to the characteristics of the transitions between these states. 
In Table 1 is presented a matrix that illustrates the characteristics of transitions be-
tween states of an aircraft and additionally the transitions between operation states 
are presented in Figure 1.
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Table 1. The possibilities of transitions between states [own elaboration]

λij S1 S2 S3 S4 S5 S6 S7 S8 Sum from
S1 – Waiting before launching S1 − 1 0 0 0 1 0 1 3
S2 – Pre-launch service status S2 0 − 1 0 0 1 0 0 2
S3 – Flight status S3 0 0 − 1 0 0 0 0 1
S4 – Post-flight service S4 0 0 0 − 1 1 0 1 3
S5 – Acceptance of aircraft S5 0 0 0 0 − 1 1 0 2
S6 – State of repair S6 0 0 0 0 0 − 1 0 1
S7 – State of service S7 0 0 0 0 0 1 − 1 2
S8 – State of waiting for flight S8 1 0 0 0 0 0 0 − 1

Sum to 1 1 1 1 1 5 2 3 15

Fig. 1. Graph showing transitions between aircraft operational states [own elaboration]

2.3. ANALYSIS OF THE OPERATION PROCESS USING MARKOV PROCESSES

Transition of the aircraft from the state Sa to the Sb state, where 𝑏 ≠ 𝑎 in the time 
interval Δt is determined by the corresponding relation:
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• Πa,b- The conditional probability of the Markov chain inserted in the process 

(the probability of jump transition). 

The probability of occurrence of each state is determined by the probability of 

occurrence of the states included in Figure 1, and can be described by the equations: 

 

𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃1(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −�𝜆𝜆𝜆𝜆1,2 + 𝜆𝜆𝜆𝜆1,8 + 𝜆𝜆𝜆𝜆1,6�𝑃𝑃𝑃𝑃1(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆8,1𝑃𝑃𝑃𝑃8(𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃2(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −�𝜆𝜆𝜆𝜆2,3 + 𝜆𝜆𝜆𝜆2,6�𝑃𝑃𝑃𝑃2(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆1,2𝑃𝑃𝑃𝑃1(𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃3(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −�𝜆𝜆𝜆𝜆3,4�𝑃𝑃𝑃𝑃3(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆2,3𝑃𝑃𝑃𝑃2(𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃4(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −�𝜆𝜆𝜆𝜆4,5 + 𝜆𝜆𝜆𝜆4,6 + 𝜆𝜆𝜆𝜆4,8�𝑃𝑃𝑃𝑃4(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆3,4𝑃𝑃𝑃𝑃3(𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃5(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −�𝜆𝜆𝜆𝜆5,6 + 𝜆𝜆𝜆𝜆5,7�𝑃𝑃𝑃𝑃5(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆4,5𝑃𝑃𝑃𝑃4(𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃6(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −�𝜆𝜆𝜆𝜆6,7�𝑃𝑃𝑃𝑃6(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆7,6𝑃𝑃𝑃𝑃7(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆5,6𝑃𝑃𝑃𝑃5(𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃7(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −�𝜆𝜆𝜆𝜆7,6 + 𝜆𝜆𝜆𝜆7,8 �𝑃𝑃𝑃𝑃7(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆6,7𝑃𝑃𝑃𝑃6(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆5,7𝑃𝑃𝑃𝑃5(𝑡𝑡𝑡𝑡) 

𝑑𝑑𝑑𝑑𝑃𝑃𝑃𝑃8(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

= −�𝜆𝜆𝜆𝜆8,1 �𝑃𝑃𝑃𝑃8(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆1,8𝑃𝑃𝑃𝑃1(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆4,8𝑃𝑃𝑃𝑃4(𝑡𝑡𝑡𝑡) + 𝜆𝜆𝜆𝜆7,8𝑃𝑃𝑃𝑃7(𝑡𝑡𝑡𝑡) 

 

where: 

• P1(t) - the probability of being in a "pre-flight day service" state. 

• P2(t) - the probability of being in a "pre-launch service" state. 

where:
 – Fa,b – the distributor of the residence time of the process in the state Sa, provided, 

that the next state will be Sb.
– Πa,b – The conditional probability of the Markov chain inserted in the process (the 

probability of jump transition).

The probability of occurrence of each state is determined by the probability of oc-
currence of the states included in Figure 1, and can be described by the equations:
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Fig. 2. The probability of an aircraft being in one of the operating states [own elaboration] 
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From the analysis, the transitions among the various operational states of the aircraft 

reveal significant tendencies of the aircraft to be in particular states. According to the results 

of the analysis, the aircraft is most likely to be in state S8 (waiting for flight) and state S1 

(pre-flight service). Thus, the aircraft is generally in a phase of preparation at this stage 

before it takes off. Further, a high probability being in state S3 (in flight) is also evident, 

which means that once the aircraft transitions from being grounded to being in the air, it 

generally behaves as operational as normal and efficient as possible. 

Conversely, the states with the least tendency to occur are state S5 (pilot of aircraft takeover) 

and state S2 (pre-takeoff service). These states have a probability of being transitioned to 

that decreases as the time in the operational distributions of the aircraft increases. This 

pattern could result from operational efficiencies and standard procedures that are realized 

as both the aircraft and the crew gain experience and activities are perfected for each flight. 

In total, the overall comprehensive analysis provides a likely portrait of the aircraft as it 

cycles through its operational states, and further, provides a sense of the dynamic nature of 

aircraft readiness and operations in their flow. The aircraft will more commonly be in states 

of preparation before it moves to take off, and actual flights as opposed to transitioning 

services or pilot take over. This distribution of states provides useful insights into the 

operational characteristics and efficiency of the aircraft. 
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craft increases. This pattern could result from operational efficiencies and standard 
procedures that are realized as both the aircraft and the crew gain experience and 
activities are perfected for each flight. In total, the overall comprehensive analysis 
provides a likely portrait of the aircraft as it cycles through its operational states, and 
further, provides a sense of the dynamic nature of aircraft readiness and operations 
in their flow. The aircraft will more commonly be in states of preparation before it 
moves to take off, and actual flights as opposed to transitioning services or pilot take 
over. This distribution of states provides useful insights into the operational charac-
teristics and efficiency of the aircraft.
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2.4. SUMMARY OF MARCOV MODEL

The application of analytical models in air transport reliability, while highly benefi-
cial, faces several limitations and challenges. However, case studies have also provid-
ed valuable insights into overcoming some of these issues:
1. Complexity of Systems: Air transport systems are inherently complex, involv-

ing numerous interdependent components and processes. This complexity can 
make it difficult to create accurate models that capture all relevant variables and 
interactions. Case studies have shown that breaking down the system into small-
er, more manageable subsystems can improve model accuracy and reliability.

2. Data Availability and Quality: Reliable data is crucial for the effectiveness of 
models such as Markov processes and queuing models. However, obtaining 
high-quality, comprehensive data can be challenging due to issues like data frag-
mentation, proprietary restrictions, and variability in data collection methods25. 
Case studies suggest that implementing standardized data collection protocols 
and investing in advanced data integration platforms can mitigate these chal-
lenges. 

3. Computational Requirements: Advanced models, particularly those involving 
large networks or stochastic processes, often require significant computational 
resources. This can be a barrier for some organizations, especially smaller ones, 
limiting their ability to implement such models effectively. Insights from case 
studies indicate that usage of proper numerical methods can provide scalable 
and cost-effective solutions.

4. Model Assumptions: Many analytical models rely on assumptions that may not 
hold true in all real-world scenarios. For instance, Markov models assume mem-
oryless processes, which may not accurately reflect the behavior of certain avia-
tion systems components.

5. Scalability: Applying models like the Monte Carlo method and Markov-modulat-
ed diffusion processes to large-scale systems can be challenging. Ensuring that 
these models remain scalable and efficient as system size and complexity grow is 
a significant hurdle. Successful case studies highlight the importance of iterative 
model refinement and validation to maintain scalability.

6. Interdisciplinary Integration: Effective reliability analysis often requires integrat-
ing knowledge from various disciplines, such as engineering, statistics, and eco-
nomics. Case studies recommend establishing interdisciplinary teams and fos-
tering continuous communication among experts to enhance integration.

7. Real-Time Application: Implementing these models for real-time monitoring and 
decision-making in air transport systems can be challenging due to the need 
for rapid data processing and analysis. The deploying real-time data analytics 
platforms and usage of other techniques like machine learning algorithms can 
improve responsiveness and decision-making.

25 Wang and Cheng, ‘A Study on Bayesian Method for Reliability Evaluation of Small Sample Size Aviation 
Support Systems’; Reyes-Garcés et al., ‘Advances in Solid Phase Microextraction and Perspective on 
Future Directions’.
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Addressing these limitations and challenges is crucial for the continued advancement 
and effective application of analytical models in enhancing air transport reliability 
and safety. Insights from case studies demonstrate practical approaches to overcom-
ing these hurdles, contributing to more robust and reliable aviation systems.

3. MEAN TIME BETWEEN FAILURES (MTBF) MODEL

3.1. DEFINITION AND SIGNIFICANCE OF MTBF

The Mean Time Between Failure (MTBF) is a crucial metric in air transport reliabil-
ity, impacting safety, operational efficiency, maintenance planning, cost reduction, 
regulatory compliance, design and development, and customer confidence26. High-
er MTBF values are indicative of more reliable components and systems, directly 
contributing to improved safety in air transport operations27. Systems with elevated 
MTBF scores experience fewer downtimes, essential for adhering to schedules, re-
ducing delays, and ensuring seamless air transport services28. Understanding MTBF 
facilitates enhanced maintenance scheduling, prediction of potential system failures, 
and efficient allocation of repair or replacement resources29. MTBF is also essential 
for meeting regulatory requirements and industry standards established by aviation 
authorities, providing a quantifiable measure to showcase compliance. Airlines op-
erating fleets with high MTBF rates can leverage this reliability to enhance customer 
confidence30. In summary, Mean Time Between Failure is a foundational metric in 
the aviation industry, crucial for ensuring the safety, efficiency, and reliability of air 
transport. Its application influences a broad spectrum of operational, economic, and 
regulatory aspects, underscoring its significance in upholding the high standards ex-
pected in the aviation sector.

3.2. CALCULATION AND APPLICATION OF MTBF IN AIR TRANSPORT SYSTEMS

The reliability index of aircraft includes MTTF and MTBF. The calculation formula for 
the point estimation of MTTF is as follows:

 

 

13 

 

 

regulatory aspects, underscoring its significance in upholding the high standards expected in 

the aviation sector. 

3.2 Calculation and Application of MTBF in Air Transport Systems 

The reliability index of aircraft includes MTTF and MTBF. The calculation formula for 

the point estimation of MTTF is as follows: 

𝑚𝑚𝑚𝑚 =
𝑇𝑇𝑇𝑇0
𝑁𝑁𝑁𝑁

, 

Where 𝑇𝑇𝑇𝑇0 is the sum of working time before the first failure of all samples, in hours 

(H); N is the total number of samples. 

The calculation formula for the point estimation of MTBF is as follows: 

𝑚𝑚𝑚𝑚 =
∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟
=
∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖

, 

where r is the total number of failures; 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is the accumulated working time of the 

aircraft in the evaluation period, in hours (h); 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 is the cumulative number of the i-th aircraft 

in the evaluation period.  
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Where T is the total test time of all samples for the fixed time test, in hours (h); α is 

the confidence level. 

3.3 Reliability 

The technical reliability of an object means that it can meet all the demands placed on 

it. Mathematically, it is a conditional probability that describes the chance that a given piece 

of equipment will operate from the time it starts working to the time 𝑡𝑡𝑡𝑡 without any damage. 

With this condition is that at the time of startup (𝑡𝑡𝑡𝑡 =  0), the device was fully operational. 

In other words, reliability is the probability that an object will operate correctly for a certain 

period, given its initial state as a working device. Reliability function 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡): 

 

R(t) = P(T ≥ t), t ≥ 0 

where: 

T – time of correct operation 

26 Lee et al., ‘Critical Parameter Identification for Safety Events in Commercial Aviation Using Machine 
Learning’; H. Barrett, Britter, and Waitz, ‘Global Mortality Attributable to Aircraft Cruise Emissions’; 
Gössling, ‘Risks, Resilience, and Pathways to Sustainable Aviation: A COVID-19 Perspective’; Post et al., 
‘Changes in Vital Signs, Ventilation Mode, and Catecholamine Use During Intensive Care Aeromedical 
Evacuation Flights’.

27 Żyluk et al., ‘Implementation of the Mean Time to Failure Indicator in the Control of the Logistical 
Support of the Operation Process’.

28 Aksoy et al., ‘Complex Fuzzy Assessment of Green Flight Activity Investments for Sustainable Aviation 
Industry’; Tien et al., ‘Critical Care Transport in the Time of COVID-19’.

29 Woch et al., ‘Statistical Analysis of Aviation Accidents and Incidents Caused by Failure of Hydraulic 
Systems’.

30 Baxter, Srisaeng, and Wild, ‘An Assessment of Airport Sustainability, Part 1—Waste Management at 
Copenhagen Airport’.
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Where T0 is the sum of working time before the first failure of all samples, in hours 
(H); N is the total number of samples.

The calculation formula for the point estimation of MTBF is as follows:
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MTBF is:
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regulatory aspects, underscoring its significance in upholding the high standards expected in 

the aviation sector. 

3.2 Calculation and Application of MTBF in Air Transport Systems 

The reliability index of aircraft includes MTTF and MTBF. The calculation formula for 

the point estimation of MTTF is as follows: 

𝑚𝑚𝑚𝑚 =
𝑇𝑇𝑇𝑇0
𝑁𝑁𝑁𝑁

, 

Where 𝑇𝑇𝑇𝑇0 is the sum of working time before the first failure of all samples, in hours 

(H); N is the total number of samples. 

The calculation formula for the point estimation of MTBF is as follows: 

𝑚𝑚𝑚𝑚 =
∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖

𝑟𝑟𝑟𝑟
=
∑ 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖𝑖𝑖

, 

where r is the total number of failures; 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 is the accumulated working time of the 

aircraft in the evaluation period, in hours (h); 𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖 is the cumulative number of the i-th aircraft 

in the evaluation period.  

If the products do not failure in the fixed time test, the lower confidence limit of MTBF 

is: 

𝑚𝑚𝑚𝑚𝐿𝐿𝐿𝐿 =
𝑇𝑇𝑇𝑇

−ln (1 − 𝛼𝛼𝛼𝛼)
 

Where T is the total test time of all samples for the fixed time test, in hours (h); α is 

the confidence level. 

3.3 Reliability 

The technical reliability of an object means that it can meet all the demands placed on 

it. Mathematically, it is a conditional probability that describes the chance that a given piece 

of equipment will operate from the time it starts working to the time 𝑡𝑡𝑡𝑡 without any damage. 

With this condition is that at the time of startup (𝑡𝑡𝑡𝑡 =  0), the device was fully operational. 

In other words, reliability is the probability that an object will operate correctly for a certain 

period, given its initial state as a working device. Reliability function 𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡): 

 

R(t) = P(T ≥ t), t ≥ 0 

where: 

T – time of correct operation 

Where T is the total test time of all samples for the fixed time test, in hours (h); α is 
the confidence level.

3.3. RELIABILITY

The technical reliability of an object means that it can meet all the demands placed 
on it. Mathematically, it is a conditional probability that describes the chance that 
a given piece of equipment will operate from the time it starts working to the time t 
without any damage. With this condition is that at the time of startup (t = 0) the de-
vice was fully operational. In other words, reliability is the probability that an object 
will operate correctly for a certain period, given its initial state as a working device. 
Reliability function R(t)

R(t) = P(T ≥ t), t ≥ 0
where:

T – time of correct operation,
P – probability.

The function refers to the probability of a situation in which the device, at least until 
time t, was not damaged (was operational).

Reliability and unreliability are terms that describe the characteristics of a particular 
aircraft in some characteristic way. By analysing this data, we can assess the suita-
bility and capability of an aircraft to perform certain aviation tasks. Today, thanks to 
technological advances, designers already at the stage of research and design can 
predict the service life of individual systems or equipment, which allows us to deter-
mine the appropriate serviceability period for aircraft.

Reliability is a broad term, and it can apply to a wide variety of equipment. This paper 
focuses mainly on aircraft reliability, and on the engine of the M-28 Bryza aircraft. In 
general, however, reliability refers to the ability of aircraft technology to meet specif-
ic requirements at a specific time and under specific operating conditions.
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Expanding on this definition, it can be said that reliability means that a given unit, 
under appropriate operating conditions, will meet the condition of trouble-free op-
eration for a certain predetermined period, which involves a certain objective degree 
of confidence. In the case of an aircraft, reliability requirements include, among oth-
er things:

 – limit the number of permissible damages to the aircraft,
 – minimizing the number of damages incurred during flight,
 – reducing the time spent repairing the aircraft to a minimum,
 – ensuring maximum suitability of the aircraft to perform the tasks/requirements 

set for it.

R(t) the reliability function (survival function/survival function) is the complement 
of the distribution to the singularity. The probability of continuous operation over 
a certain time interval.

It is expressed by the formula31:

R(t) = 1 − F(t)
where:

F(t) – damage density function.

When damage intensity remains constant (unaffected by passing service life) it is 
relevant to the device or instrument in reliability modeling32.

𝜆(𝑡) = 𝜆 = 𝑐𝑜𝑛𝑠𝑡.
The reliability function is expressed in such a situation:

𝑅(𝑡) = 𝑒−𝜆t

The average time to failure, in such a situation, is expressed by the formula:
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When damage intensity remains constant (unaffected by passing service life) it is 

relevant to the device or instrument in reliability modeling [29]. 

 

𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) = 𝜆𝜆𝜆𝜆 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡. 

 

The reliability function is expressed in such a situation: 

 

𝑅𝑅𝑅𝑅(𝑡𝑡𝑡𝑡) = 𝑒𝑒𝑒𝑒−𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 

 

The average time to failure, in such a situation, is expressed by the formula: 

 

𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹 =
1
𝜆𝜆𝜆𝜆

 

The above equations show that the determination of the ultimate reliability of an 

instrument or device depends on the damage intensity function 𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡). When 𝜆𝜆𝜆𝜆(𝑡𝑡𝑡𝑡) = 𝜆𝜆𝜆𝜆 (the 

function takes a constant value), the distribution of operating time that is failure-free is 

represented as an exponential probability distribution. However, when the intensity function 

is not constant, we use approximation using other probability distributions, such as normal, 

log-normal, Weibull, exponential [15] 

 

3.4 Case Studies: MTBF for transport Aircraft  

The case study analysed the time between damage occurrences for the M-28 aircraft 

engine using data from 2012 to 2019. The STATISTICA program was employed to 

determine the best-fitting statistical model for describing the Time To Failure (TTF). Among 

various models, the normal distribution was found to best describe the TTF, with an average 

of 846 minutes and a standard deviation of 446 minutes. This significant scatter in TTF is 

attributed to diverse operational conditions, including varying aircraft use intensity, 

atmospheric conditions, maintenance quality, and engine age. Identifying the normal 

distribution as the best fit allows for accurate reliability measures such as Mean Time 

Between Failures (MTBF) and failure intensity (λ), which are crucial for effective 

maintenance planning and continuous airworthiness. 

The above equations show that the determination of the ultimate reliability of 
an instrument or device depends on the damage intensity function 𝜆(𝑡). When  
𝜆(𝑡) = 𝜆 (the function takes a constant value), the distribution of operating time that 
is failure-free is represented as an exponential probability distribution. However, 
when the intensity function is not constant, we use approximation using other prob-
ability distributions, such as normal, log-normal, Weibull, exponential.

3.4. CASE STUDIES: MTBF FOR TRANSPORT AIRCRAFT 

The case study analysed the time between damage occurrences for the M-28 air-
craft engine using data from 2012 to 2019. The STATISTICA program was employed 
to determine the best-fitting statistical model for describing the Time To Failure 
(TTF). Among various models, the normal distribution was found to best describe 

31 Żurek, ‘Review of the safety evaluation methods in aviation’.
32 Ibidem.
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the TTF, with an average of 846 minutes and a standard deviation of 446 minutes. 
This significant scatter in TTF is attributed to diverse operational conditions, includ-
ing varying aircraft use intensity, atmospheric conditions, maintenance quality, and 
engine age. Identifying the normal distribution as the best fit allows for accurate 
reliability measures such as Mean Time Between Failures (MTBF) and failure inten-
sity (λ), which are crucial for effective maintenance planning and continuous air-
worthiness.

3.5. FAILURE INTENSITY, RELIABILITY AND UNRELIABILITY FOR INDIVIDUAL  
   AIRCRAFT VERSIONS M-28 BRYZA 

To enhance the consistency and readability of the analysis on damage intensity, reli-
ability, and unreliability as functions of time for various versions of the aircraft across 
different years, it’s practical to organize the data, especially the intensity calculations, 
into a table format. In the Tables 2 and Table 3 is a structured presentation of this 
information, including the number of airframes for each version of the aircraft over 
the given years and the calculated intensity of incidents (Λ) per hour of operation.

Table 2. Number of Raids by Different Variants of the Aircraft [own elaboration]

Year M-28 B (Hours) M-28B/ PT (Hours) M-28B/ PT/ GC (Hours)

2016 3894 h 1389 h 1510 h

2017 3822 h 1417 h 1631 h

2018 4498 h 1298 h 1608 h

Table 3. Incident Intensity Calculations (Λ = Incidents / Hours) [own elaboration]

Year M-28B M-28B/PT M-28B/PT/GC

2016 0.003595 1/h 0.00504 1/h 0.017881 1/h

2017 0.003663 1/h 0.004234 1/h 0.01962 1/h

2018 0.002223 1/h 0.005393 1/h 0.020522 1/h

This structured approach not only simplifies the comparison of data across different 
years and aircraft variants but also highlights trends in damage intensity, reliability, 
and unreliability. From the tables, it’s evident that the basic version of the Bryza 
aircraft consistently showed the lowest damage intensity over the three years, with 
a gradual improvement in 2018. Conversely, the version with glass cockpit avionics 
(M-28B/PT/GC) exhibited the highest damage intensity, indicating a potential area 
for further investigation and improvement.

Such tabulation and analysis are crucial for understanding the operational perfor-
mance and reliability of aircraft variants over time, aiding in maintenance planning, 
design modifications, and the overall enhancement of air transport reliability.

Reliability and unreliability charts for each version of the Bryza aircraft in 2016 will 
be presented in Figure 3.
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Reliability and unreliability charts for each version of the Bryza aircraft in 2016 will be 

presented in Figure 3. 

3.6 Summary of MTBF Method 

Following the discussion on the importance of Mean Time Between Failure in aviation, 

exploring the MTTF method within the same context reveals both its advantages and 

challenges. MTTF provides a quantitative approach for evaluating the reliability of aviation 

components and systems, essential for maintaining operational integrity. It offers tangible 

outcomes, enabling aviation professionals to make informed decisions based on anticipated 

failure times and enhancing decision-making processes. Being widely recognized, MTTF 

fosters unified discussions and comparisons of reliability across the aviation sector. By 

estimating mean time to failure, organizations can adopt predictive maintenance strategies, 

significantly reducing downtime and optimizing maintenance schedules. Using MTTF to 

examine historical data assists in identifying trends and potential improvements within 

aviation systems, ensuring continuous performance and safety enhancements. 

In summary, while the MTTF method offers valuable insights into aviation system 

reliability, effectively addressing the complexities of uncertainties, human factors, policy 

implications, and the evolving aviation and space landscape is crucial for its successful 

application. Addressing these challenges is key to fully leveraging MTTF benefits in 

enhancing aviation reliability and safety. 

0

0,2

0,4

0,6

0,8

1

1,2

0 500 1000 1500 2000 2500 3000 3500 4000 4500

R(t) Q(t)

Figure 3: Example of reliability function [own elaboration] 

Fig. 3. Example of reliability function [own elaboration]

3.6. SUMMARY OF MTBF METHOD

Following the discussion on the importance of Mean Time Between Failure in avia-
tion, exploring the MTTF method within the same context reveals both its advantages 
and challenges. MTTF provides a quantitative approach for evaluating the reliability 
of aviation components and systems, essential for maintaining operational integrity. 
It offers tangible outcomes, enabling aviation professionals to make informed deci-
sions based on anticipated failure times and enhancing decision-making processes. 
Being widely recognized, MTTF fosters unified discussions and comparisons of reli-
ability across the aviation sector. By estimating mean time to failure, organizations 
can adopt predictive maintenance strategies, significantly reducing downtime and 
optimizing maintenance schedules. Using MTTF to examine historical data assists 
in identifying trends and potential improvements within aviation systems, ensuring 
continuous performance and safety enhancements.

In summary, while the MTTF method offers valuable insights into aviation system 
reliability, effectively addressing the complexities of uncertainties, human factors, 
policy implications, and the evolving aviation and space landscape is crucial for its 
successful application. Addressing these challenges is key to fully leveraging MTTF 
benefits in enhancing aviation reliability and safety.

4. MACHINE LEARNING FOR PREDICTIVE MAINTENANCE

4.1. INTRODUCTION TO MACHINE LEARNING IN AVIATION

Introduction to Machine Learning in Aviation Machine learning (ML) has emerged as 
a transformative technology with multiple applications in various industries, includ-
ing aviation. To improve safety, efficiency and decision-making, the aviation sector 
has increasingly adopted ML techniques in recent years. The integration of ML in avi-
ation involves a wide range of applications, from predictive maintenance and safety 
risk identification to anomaly detection and flight parameter optimization. Predictive 
maintenance of aircraft systems is one of the key areas where ML has been exten-
sively applied. 
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Using feature extraction and data analysis, ML models have been developed for 
the prediction and prevention of failures in aircraft systems33. As well as reducing 
downtime and maintenance costs, it improves overall plant safety and reliability. 
In addition, ML techniques have been instrumental in addressing safety concerns 
in the aviation industry. ML algorithms have been used to analyse flight data and 
improve understanding of safety-critical parameters, from identifying in-flight risk 
factors to predicting and preventing aviation accidents34. Furthermore, applying ML 
to anomaly detection has helped improve aviation safety by identifying abnormal 
patterns and potential threats. In addition, in the optimization of flight parameters 
and trajectory planning, ML has played a key role. Interpretable ML methods have 
been used to address approach and landing safety issues, contributing to the over-
all safety and efficiency of flight operations35. Additionally, ML models have been 
integrated with Kalman filtering for wind nowcasting problems, demonstrating the 
potential of hybrid frameworks to address aviation-specific challenges36. The use of 
ML in aviation extends beyond operational aspects to include passenger demand 
forecasting, airport delay prediction, and even satellite navigation. ML models such 
as artificial neural networks, linear regression, gradient boosting, and random forest 
have been used to forecast passenger demand and optimise airport operations37. In 
addition, ML techniques have been applied to satellite navigation systems, demon-
strating the potential to improve the accuracy and reliability of navigation in both 
manned and unmanned aircraft38. In summary, the integration of ML into aviation 
represents a significant step forward, with far-reaching implications for safety, ef-
ficiency, and decision-making within the industry. The diverse applications of ML, 
ranging from predictive maintenance and safety risk identification to flight param-
eter optimisation and anomaly detection, highlight its transformative potential in 
shaping the future of aviation.

4.2. TYPES OF MACHINE LEARNING ALGORITHMS FOR RELIABILITY

Each machine learning algorithm has some uniqueness in terms of its learning mod-
el and parameter optimisation. However, there are some common steps, such as 
the preparation of datasets, feature selection methods and performance evaluation 
approaches. These steps are discussed later in the paper. Figure 4 illustrates a sche-
matic representation of a general classification/prediction protocol using a machine 
learning approach.

33 Karaoğlu, Mbah, and Zeeshan, ‘Applications of Machine Learning in Aircraft Maintenance’.
34 Lee et al., ‘Critical Parameter Identification for Safety Events in Commercial Aviation Using Machine 

Learning’.
35 Ding et al., ‘Implementation of Decision Tree for Maintenance Policy Decision Making - A Case Study 

in Semiconductor Industry’.
36 Kim and Lee, ‘Unscented Kalman Filter-Aided Long Short-Term Memory Approach for Wind Nowca-

sting’.
37 Zachariah, Sharma, and Kumar, ‘Systematic Review of Passenger Demand Forecasting in Aviation In-

dustry’.
38 Golda and Zieja, ‘Risk Analysis in Air Transport’.
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used to forecast passenger demand and optimise airport operations34. In addition, ML 

techniques have been applied to satellite navigation systems, demonstrating the potential to 

improve the accuracy and reliability of navigation in both manned and unmanned aircraft35.  

In summary, the integration of ML into aviation represents a significant step forward, with 

far-reaching implications for safety, efficiency, and decision-making within the industry. 

The diverse applications of ML, ranging from predictive maintenance and safety risk 

identification to flight parameter optimisation and anomaly detection, highlight its 

transformative potential in shaping the future of aviation. 

4.2 Types of Machine Learning Algorithms for Reliability 

Each machine learning algorithm has some uniqueness in terms of its learning model 

and parameter optimisation. However, there are some common steps, such as the preparation 

of datasets, feature selection methods and performance evaluation approaches. These steps 

are discussed later in the paper. Figure 4 illustrates a schematic representation of a general 

classification/prediction protocol using a machine learning approach. 

Figure 4: Schematic representation of general classification/prediction using machine knowledge [own elaboration] 

4.3 Case Studies: Success Stories in Predictive Maintenance 

In the initial phase of the analysis, data describing the transport aircraft's operating 

process were selected for analysis. This data included: 

34 Zachariah, Sharma, and Kumar, ‘Systematic Review of Passenger Demand Forecasting in Aviation 
Industry’. 

35 Golda and Zieja, ‘Risk Analysis in Air Transport’. 
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Fig. 4. Schematic representation of general classification/prediction using machine 
knowledge [own elaboration]

4.3. CASE STUDIES: SUCCESS STORIES IN PREDICTIVE MAINTENANCE

In the initial phase of the analysis, data describing the transport aircraft’s operating 
process were selected for analysis. This data included:

 – Occurrence of adverse events,
 – Date and time of departure,
 – Aircraft operating time,
 – Information on pilot experience.

The selection of the best models was performed using the Data Miner tool in STATIS-
TICA. This tool allows for the simultaneous development of several models, facilitat-
ing the selection of the most suitable one for further analysis. The model develop-
ment process involves several steps:

 – Preparing data for analysis,
 – Preparing a training sample (for model development) and a test sample,
 – Selecting variables,
 – Removing redundancies in the data,
 – Modifying variable selection,
 – Model development and evaluation.

During the analysis, variables were selected, and their type and role were defined 
using a stratified random sampling method. This method allows for the selection 
of equal subgroups for undesirable events (which account for less than 10% of all 
events) and successful task performance events. After creating subgroups for ad-
verse and non-adverse events, 20% of the cases were drawn to form a test sample 
for assessing model quality.
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The model used in the study ensures equal sample sizes for incidents and non-in-
cidents. The data sample is first checked for the number of incidents, and then an 
equal number of non-incident cases are added using methods such as algorithms 
or Gauss elimination. Due to the sensitivity of the data, exact numbers are not dis-
closed. The entire sample (50% incidents, 50% non-incidents) is then divided into 
two groups: a learning sample (usually 80% of all cases) and a test sample. Models 
are built using the learning sample and subsequently tested with the test sample. All 
these steps are conducted in STATISTICA. Upon completion, tables are generated to 
evaluate the model’s quality.

Table 4. Table of numbers. Predictions. C&RT [own elaboration]

Decision Prediction
YES

Prediction
NO

YES
% from the column 59.72% 42.25%
% from the line 58.90% 41.10%
% of total 30.07% 20.98% 51.05%

NO
% from the column 40.28% 57.75%
% from the line 41.43% 58.57%
% of total 20.28% 28.67% 48.95%

Total
% of total 50.35% 49.65%

In Table 4, when a decision is predicted, YES means that an incident has occurred, 
NO means no incident. The percentages shown show how many such decisions were 
predicted. When the cases where an incident occurred are considered, it is apparent 
that out of the total, 30.07% of the cases were predicted correctly, and in 20.98% of 
the cases, even though an incident occurred, the model shows that it did not. Where 
there were no incident 20.28% of cases were predicted correctly and 28.67% incor-
rectly. Overall, this results in 50.35% of predictions being checked and 49.65 being 
incorrect. The C&RT model allows work on binary data.

Table 5. Table of numbers. Prediction. Neural network [own elaboration]

Decision Prediction
YES

Prediction
NO

YES
% from the column 65.43% 32.26%
% from the line 72.60% 27.40%
% of total 37.06% 13.99% 51.05%

NO
% from the column 34.57% 67.74%
% from the line 40.00% 60.00%
% of total 19.58% 29.37% 48.95%

Total
% of total 56.64% 43.36%
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When the cases where an incident occurred are considered, it can be observed that, 
of the total, 37.06% of the cases were predicted correctly and 13.99% incorrectly. 
When the incident did not occur 29.58% of the cases were predicted correctly and 
29.37% incorrectly. Overall, this gave 56.64% accurate predictions and 4.,36% incor-
rect predictions.

Table 6. Table of numbers. Predictions. Boosted tree [own elaboration]

Decision Prediction
YES

Prediction
NO

YES
% from the column 59.21% 41.79%
% from the line 61.64% 38.36%
% of total 31.47% 19.58% 51.05%

NO
% from the column 40.79% 58.21%
% from the line 44.29% 55.71%
% of total 21.68% 27.27% 48.95%

Total
% of total 53.15% 46.85%

Based on Table 6, it can be observed that when an incident occurred, of the total, 
31.47% of cases were predicted correctly and 19.58% incorrectly. In contrast, when 
the incident did not occur 21.68% of cases were predicted correctly and 27.27% in-
correctly. Overall, this gives 53,15% predicted correctly and 46.85% incorrectly.

The model evaluation results indicate that the Classification and Regression Trees 
(C&RT) model had the lowest error rate at 50.35%. The Boosted Trees model followed 
with an error rate of 53.15%, while the Neural Network model had the highest error 
rate at 56.64%. These results suggest that the C&RT model is the most accurate among 
the tested models for predicting adverse events in the aircraft’s operating process.

Aviation safety standards are extremely high, and it is crucial for both pilots and 
passengers to avoid incidents, accidents, and malfunctions. The models discussed 
above are not very accurate, especially the neural network model, which is also the 
most challenging to interpret. The C&RT model has the smallest error rate and is the 
easiest to use for determining the intensity of adverse events or damage. However, 
each of these models has an accuracy of only about 50%, whereas aviation demands 
a minimum of 90% accuracy. If these models were to be used to decide, for exam-
ple, whether a flight could proceed under certain weather conditions with a specific 
pilot and aircraft, their errors would need to be considered. The results do not meet 
the high standards of aviation safety, so these models could not be the sole basis for 
decision-making. However, they could provide insights into potential incident risks, 
such as a pilot’s inexperience with a particular aircraft type. These models can help 
identify situations that pose safety risks, thereby strengthening current safety rules. 
Their application requires further analysis, but preliminary results are promising, 
and with more parameters, these models could become useful tools for the safe 
operation of aircraft.
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4.4. SUMMARY OF MACHINE LEARNING MODELS

A second trend that has seen intensive development recently is the application of 
machine learning methods in aviation. These methods offer several advantages, in-
cluding:

 – Anomaly Detection and Predictive Maintenance: Machine learning techniques 
provide advanced capabilities for detecting anomalies in flight data and conduct-
ing predictive maintenance. This is critical for identifying potential issues and pro-
actively managing aircraft system reliability.

 – Flexibility and Adaptability: Methods such as ensemble learning and reinforce-
ment learning offer flexibility and adaptability, addressing complex reliability 
challenges in aircraft systems. These techniques can learn from data and adapt 
to changing operational conditions, enhancing their applicability in dynamic avi-
ation environments).

However, there are notable disadvantages and challenges associated with machine 
learning in aviation:

 – Data Labeling and Surveillance Challenges: Machine learning techniques often 
struggle with appropriately labeling aerospace system condition data, which lim-
its the effectiveness of supervised learning techniques. This can impact the relia-
bility assessments based on these methods.

 – Computational Complexity and Resource Requirements: The application of cer-
tain machine learning techniques, particularly deep learning models, involves 
significant computational complexity and resource demands. This can be chal-
lenging in resource-constrained aviation environments.

Despite these challenges, the strong points of machine learning, such as its capability 
for advanced anomaly detection and flexibility, make it a promising tool for enhanc-
ing aviation safety and reliability. Further research and development are needed to 
address its limitations and fully leverage its potential in aviation.

5. CONCLUSION

This research explores the application of three distinct methodologies: Markov 
chains, mean time between failures (MTBF), and machine learning, to improve the 
reliability of the same transport aircraft. Each method presents unique possibilities 
to improve air transport reliability.

Markov Chains:
 – Strengths: Effective for modeling the dynamic behavior of complex systems, par-

ticularly in scenarios with limited data, and adaptable to changing conditions.
 – Weaknesses: The assumption of memoryless processes can be a significant limi-

tation, as it may not accurately represent real-world aviation systems.
 – Future Perspective: Future research could focus on developing hybrid models 

that integrate Markov processes with other techniques to improve accuracy in 
various operational conditions.
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Mean Time Between Failures (MTBF):
 – Strengths: Provides valuable quantitative reliability metrics, facilitates mainte-

nance planning, and enhances operational efficiency.
 – Weaknesses: Its effectiveness depends on high-quality data and may not capture 

the complexity of all potential failure modes.
 – Future Perspective: Integrating MTBF with real-time data analytics could signifi-

cantly enhance predictive maintenance strategies.

Machine Learning:
 – Strengths: Offers advanced anomaly detection, predictive maintenance, and ad-

aptability to dynamic environments.
 – Weaknesses: Challenges include extensive data labeling, high computational re-

quirements, and complexity in interpretation.
 – Future Perspective: Addressing these challenges by improving data quality, re-

ducing computational demands, and developing more interpretable models is 
crucial for future research.

Differences and Applications:
 – Markov Chains: Best suited for modeling and predicting system states and tran-

sitions.
 – MTBF: Primarily used to provide reliability metrics for maintenance planning.
 – Machine Learning: Offers robust predictive capabilities and adapts to new data 

for ongoing reliability assessment.

This study demonstrates that each of these three models – Markov chains, MTBF, 
and machine learning – provides a unique approach to assessing and enhancing the 
reliability of transport aircraft. They are not integrated but rather represent differ-
ent strategies to achieve the same goal of improving aviation safety and operational 
efficiency. Future research should continue to explore these methodologies inde-
pendently and in combination with advanced data analytics and real-time monitor-
ing to further enhance air transport reliability.
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