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RELIABILITY OF UNMANNED AERIAL VEHICLES: 
WINGLETS’ ISSUE

NIEZAWODNOŚĆ BEZZAŁOGOWYCH STATKÓW POWIETRZNYCH: 
ZAGADNIENIE WINGLETÓW

Abstract

The reliability of the military equipment de-
termines the possibility of the success of the 
mission. This paper focuses on identifying da-
mage to Unmanned Aerial Vehicles during their 
operation. The research problem was expres-
sed by the question: which UAV elements are 
most often damaged, and what causes it? The 
research is based on the analysis of technical 
documents, an electronic damage archiving sys-
tem, and manufacturer documentation. These 
studies were complemented by empirical rese-
arch conducted at the 12th Unmanned Aerial 
Vehicles Base in Mirosławiec, Poland. The initial 
phase involved identifying damages affecting 
the operation of Unmanned Aerial Vehicles. 
Subsequently, the reliability measure was de-
termined for the repairable two-state object, 
excluding repair time.
Keywords: Unmanned Aerial Vehicle; drone, re-
liability, exploitation 

Streszczenie

Niezawodność sprzętu wojskowego decydu-
je o możliwości powodzenia misji. W artykule 
skupiono się na identyfikacji uszkodzeń bezza-
łogowych statków powietrznych podczas ich 
eksploatacji. Problem badawczy wyrażał się 
w pytaniu: które z elementów UAV ulegają naj-
częściej uszkodzeniom i co jest tego przyczyną? 
Badania opierają się na analizie dokumentacji 
technicznej elektronicznego systemu archiwi-
zacji uszkodzeń oraz dokumentacji producenta. 
Uzupełnieniem tych badań były badania empi-
ryczne prowadzone w 12. Bazie Bezzałogowych 
Statków Powietrznych w Mirosławcu. W począt-
kowej fazie zidentyfikowano uszkodzenia mają-
ce wpływ na działanie bezzałogowych statków 
powietrznych. Następnie wyznaczono miarę 
niezawodności naprawialnego obiektu dwusta-
nowego, z wyłączeniem czasu naprawy.
Słowa kluczowe: bezzałogowe statki powietrz-
ne, drony, niezawodność, eksploatacja
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1. INTRODUCTION

Both the military and civilian sectors have recognized the potential of unmanned 
aerial vehicles (UAVs) or drones. This is evidenced by the growing interest of business 
and security leaders. In the civilian market, the estimated global value of UAVs from 
2017 to 2026 exceeds $73.5 billion, equivalent to the annual GDP of Lithuania and 
Latvia combined1. The significant potential for their use in combat, their impact on 
operational military doctrine2, coupled with their relatively low cost (many times less 
than manned aircraft), has aroused growing interest in developed and developing 
countries. 

These trends are reflected in the Technical Modernization Plan of the Polish Armed 
Forces, where UAVs are prominently featured in three main operational priorities: 
Image and Satellite Reconnaissance, Missile and Artillery Forces Modernization (as 
additional equipment to the missile system), and the task of Circulating Ammunition 
of the Warmate type3. Undoubtedly, the role of UAVs in combat will continue to grow 
with technological advancements. Ongoing efforts aim to equip UAVs with artificial 
intelligence4, develop concepts for their collaboration with crewed machines, and 
deploy them in swarm formations5. The increasing significance of Unmanned Aerial 
Vehicles (UAVs) and their proliferation6 on the battlefield underscores the need for 
research on their operational aspects, with a particular focus on reliability7 and fault-
lessness8. In this context, the presented article addresses the issue of identifying the 
most common damages to UAVs, which significantly impact their operational pro-
cesses. The research was conducted using an unmanned aerial vehicle of the Orbiter 
2B type. The study’s results reflect existing documents and data from an electronic 
damage archiving system. Furthermore, empirical research was carried out at the 
12th Unmanned Aerial Vehicles Base in Mirosławiec9. The identification of dama-
ges affecting the functioning of unmanned aerial vehicles and the monitoring of the 
structural condition (especially crucial for flight safety) are of paramount importance 
in the exploitation process.

1	 Ministerstwo Infrastruktury, Polski Instytut Ekonomiczny, Biała Księga Rynku Bezzałogowych Statków 
Powietrznych, Warszawa, luty 2019.

2	 P. Bernat, Unmanned Aerial Vehicles and Their Growing Role in Shaping Military Doctrine, “Security 
Forum” 2018, no. 2(1), pp. 77–90, DOI: 10.26410/SF_1/18/7.

3	 Ocena stanu realizacji Planu Modernizacji Technicznej Sił Zbrojnych RP na lata 2013–2022, 2017–2026 
i 2021–2035 według stanu na dzień 13 października 2019.

4	 M.A. Lahmeri, M.A. Kishk, M.S. Alouini, Artificial intelligence for UAV-enabled wireless networks: 
A survey, “IEEE Open Journal of the Communications Society” 2021, no. 2, pp. 1015–1040.

5	 W. Chen, J. Liu, H. Guo, N. Kato, Toward robust and intelligent drone swarm: Challenges and future 
directions, “IEEE Network” 2020, no. 34(4), pp. 278–283.

6	 M. Fuhrmann, M.C. Horowitz, Droning on: Explaining the proliferation of unmanned aerial vehicles, 
“International Organization” 2017, no. 71(2), pp. 397–418.

7	 A. Michalska, Introduction to Reliability Tests of Unmanned Aircraft Used in the Armed Forces of the 
Republic of Poland, “Safety & Defense” 2019, no. 5(2), pp. 54–61.

8	 E. Petritoli, F. Leccese, L. Ciani, Reliability and maintenance analysis of unmanned aerial vehicles, 
“Sensors” 2018, no. 18(9), p. 3171, doi: 10.3390/s18093171, PMID: 30235897, PMCID: PMC6165073.

9	 D. Bogusz, Porty lotnicze i morskie, LAW, Dęblin 2023, doi: 10.55676/66514-68-3.



355

https://journal.law.mil.pl

A. MICHALSKA � D. MICHALSKI � S. SAVCHUK � Reliability of unmanned aerial vehicles: winglets’ issue

2. RESEARCH METHODS

The main objective of the research was to identify the most frequent critical dam-
age to unmanned aerial vehicles during their operation. The research problem was 
expressed by the question: which of the UAV elements are most often damaged, 
and what are the causes of it? The research was conducted based on an analysis of 
technical documents, an electronic system for archiving damage, and manufactur-
er’s documentation. These studies were supplemented by empirical research in the 
form of a diagnostic survey conducted at the 12th Unmanned Aerial Vehicle Base in 
Mirosławiec. 

A collection of information and technical data gathered using the SAMANTA system 
supporting exploitation control allowed for the development of evidence and math-
ematical experience in calculating reliability – a measure of faultlessness – utilizing 
renewal theory. This system serves as an electronic data archiving and operation-
al control support system10. The SAN/SAMANTA system aids the user in managing 
the operation of aviation technology, allowing for the recognition of signs indicating 
changes in the reliability, safety, and quality of the operation processes of aircraft11. 
It also determines recommended directions for preventive actions12.

The SAN/SAMANTA BIS system consists, among other things, of local computerized 
databases installed in aviation units and repair facilities. These databases accumu-
late knowledge regarding the course of operation for each instance of an aircraft. 
The acquired data includes information about the registration and operational status 
of aircraft, their components, and subcomponents, along with details about their 
rotation and the functioning of individual instances of aircraft, components, and ag-
gregates, among other things. The collected information is transmitted to collective 
databases at higher levels of aviation technology management and the central bank. 
Furthermore, after processing, the data is utilized according to the needs of direct 
users. Data emanating from each computer station is automatically compressed and 
encoded. Using the SAN/SAMANTA BIS system allows for assessing aircraft opera-
tion, considering the detectability of damages and the effectiveness of preventive 
measures, technical readiness of aircraft, flight safety levels in technical aspects, and 
support for the work of aviation incident investigation committees13. It facilitates 
estimating the actual workload (resources) and the processes of managing resour-
ce-related activities14. The reliability level and quality of the aircraft operation pro-
cess are assessed using adopted indicators and characteristic analyses. During the 

10	 R. Kaleta, J. Niczyj, A. Bryzek, Zarządzanie procesami eksploatacyjnymi z wykorzystaniem systemów 
informatycznego wsparcia eksploatacji statków powietrznych, “Autobusy” 2016

11	 R. Kaleta, M. Zieja, A. Bryzek, Informatyczne wspomaganie procesu eksploatacji wojskowych statków 
powietrznych, TRANSCOMP – XIV International Conference Computer Systems Aided Science. Indu-
stry and Transport, 6-9.12.2010 Zakopane, “Logistyka” 2010, no. 6, s. 1291–1300.

12	 R. Kaleta, M. Witoś, M. Zieja, Systemy informatyczne wsparcia Lotnictwa Sił Zbrojnych RP, “Logistyka” 
2014, no. 6.

13	 M. Zieja, H. Smoliński, P. Gołda, Information systems as a tool for supporting the management of 
aircraft flight safety, “Archives of Transport” 2015, no. 36(4), pp. 67–76.

14	 A. Maziar, Classification of unmanned aerial vehicles, Mech Eng 2016.
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compilation of operational data from the SAN/SAMANTA system, details regarding 
damages incurred by all Orbiter 2B devices were gathered over three years, spanning 
from the latter half of 2016 to the initial half of 2019. The dataset encompasses the 
following:
1.	 The count of damages recorded between 2016 and 2019.
2.	 Categorization into ground and air damage.
3.	 In-depth particulars concerning damages and the subsequent remediation pro-

cedures applied.
4.	 The overall count of flights.
5.	 The cumulative repair duration for specified components.
6.	 The count of take-offs and landings for the entire fleet within a specific year.
7.	 The total planned raid count for all UAVs.
8.	 The actual count of flights undertaken by all UAVs.
9.	 The nature of the service performed.

Following a comprehensive analysis of the amassed data and the cataloging of dama-
ges over the three-year period, specific insights were garnered regarding the frequ-
ency of damages for individual elements.

Empirical studies using a survey method were focused on individuals involved in the 
usage and operation issues. Thanks to these conducted studies, a realistic picture 
and qualitative reflection of UAV exploitation quality were obtained. The expert 
group participating in the survey comprised 30 individuals, with respondents being 
soldiers, including women and men. Responses were provided by experts serving in 
positions related to the operation and use of unmanned aerial vehicles. Additionally, 
six surveys were excluded from the study, including three due to respondents lacking 
involvement with the Orbiter 2B UAV and 3 for the unreliability of responses to the 
posed questions.

Research limitations concerned the diagnostic survey, including estimating the size 
of the research group, statistical error, and representativeness. This is due to the 
sensitive nature of information about the completion of the military unit where the 
research was conducted, affecting the safety and defense of the state. Furthermore, 
the study covered only one type of unmanned aerial vehicle, namely the Orbiter 2B. 
It is emphasized that the chosen type of UAV constitutes the vast majority used in 
the Polish Armed Forces. The decision was made to calculate exclusively for the re-
liability measure, which describes individual elements without considering the UAV 
as a complete structure. Exploitation data were entered into the SAMANTA system 
only from the second half of 2016 onwards, so the observation period was limited 
to that time.

3. MAIN CRITICAL DAMAGE OF UAVS

The analysis of the survey conducted with specialists in the field of unmanned aerial 
systems operations allowed, for the first time, the determination of which element 
of UAVs is the most unreliable. In the survey, it was established that the minimum 
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required experience in the field of UAVs operation is one year. The chart below illu-
strates the survey participants’ responses, utilizing survey techniques for the first 
posed question regarding the most common primary cause of malfunction in unman-
ned aerial vehicles.

 

Fig.  1. Percentage of the answer to the most common primary cause of malfunction in 
unmanned aerial vehicles. Own work. 

 

This means that 63% of the surveyed individuals believe that the leading cause is damage, 

characterized by the loss of the object's fitness for further operation. Damage occurs when the 

parameters of the unmanned aerial vehicle are beyond the norm or exceed its critical strength 

values. The next question determined which structural elements, according to the respondents, 

are most commonly subject to damage. 

Demage
63%

Block
4%

Not-working
8%

Malfunction
11%

Potential reliability 
deficiency

7%

Defective operation
7%

Figure 1. Percentage of the answer to the most common primary cause of malfunction in 
unmanned aerial vehicles 
Source: own work.

This means that 63% of the surveyed individuals believe that the leading cause is da-
mage, characterized by the loss of the object’s fitness for further operation. Damage 
occurs when the parameters of the unmanned aerial vehicle are beyond the norm 
or exceed its critical strength values. The next question determined which structural 
elements, according to the respondents, are most commonly subject to damage.

 

Fig.  2. Percentage representation of the answer to which structural element of the UAV is 
most often damaged. Own work. 

 

According to the data presented in Figure 2, it is evident that the most frequently damaged part 

is the winglet. It should be noted that the camera head response is 33%, the power supply is 

4%, and FCC (Fly Control Computer) is 4%. These do not meet the criterion and are not part 

of the structure. Nevertheless, to highlight the differences and correctness, it was decided to 

present the included survey responses. The initial analysis of the research conducted based on 

the survey reveals that the main damages occurring in the unmanned aerial vehicle relate to 

damage to the skin elements. Studies on the most damaged element of the UAVs were 

conducted based on technical documentation analysis. The chart below presents the results 

regarding the quantity of damages and allows for identifying the most unreliable elements. 

 

FCC
4%

Power
4%

Winglet
59%

Camera
33%

Figure 2. Percentage representation of the answer to which structural element of the UAV is 
most often damaged 
Source: own work.
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According to the data presented in Figure 2, it is evident that the most frequently da-
maged part is the winglet. It should be noted that the camera head response is 33%, 
the power supply is 4%, and FCC (Fly Control Computer) is 4%. These do not meet 
the criterion and are not part of the structure. Nevertheless, to highlight the diffe-
rences and correctness, it was decided to present the included survey responses. 
The initial analysis of the research conducted based on the survey reveals that the 
main damages occurring in the unmanned aerial vehicle relate to damage to the skin 
elements. Studies on the most damaged element of the UAVs were conducted based 
on technical documentation analysis. The chart below presents the results regarding 
the quantity of damages and allows for identifying the most unreliable elements.

 

Fig.  3. Analysis of SAMANTA system data, damage in the total observation time 2016-2019 
Own work. 

 

As a result of the conducted data analysis, it was decided to identify one element with the 

highest damage occurrence: Winglets in 37% of incidents.  

 

Fig.  4. UAVs damage in 2016. own work. 
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Figure 3. Analysis of SAMANTA system data, damage in the total observation time 2016–2019 
Source: own work.

As a result of the conducted data analysis, it was decided to identify one element 
with the highest damage occurrence: Winglets in 37% of incidents. 

 

Fig.  3. Analysis of SAMANTA system data, damage in the total observation time 2016-2019 
Own work. 

 

As a result of the conducted data analysis, it was decided to identify one element with the 

highest damage occurrence: Winglets in 37% of incidents.  

 

Fig.  4. UAVs damage in 2016. own work. 
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Figure 4. UAVs damage in 2016
Source: own work.
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Fig. 5. UAVs damage in 2017. own work 

 

Fig.  6. UAVs damage in 2018. own work 
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Figure 5. UAVs damage in 2017
Source: own work.  

Fig. 5. UAVs damage in 2017. own work 

 

Fig.  6. UAVs damage in 2018. own work 
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Figure 6. UAVs damage in 2018
Source: own work.

 

Fig.  7. UAVs damage in 2019. own work. 

 

Based on the charts in Figure 4-7, it can be inferred that each year, regardless of internal and 

external factors, the most damage is associated with the skin (winglet). There was no observed 

situation in which there was an accumulation of damage instances (winglet) in one year. This 

means that the element was not deemed unfit multiple times, only within a specific period (one 

year), and did not exceed the damage to the elements chosen by the author. In another case, it 

would be challenging to determine whether such an element is the most reliable, and there is a 

need for reliability studies, or if there was only a problem, for example, with a defective batch 

of elements. Based on the presented research results, it was decided to analyze further that the 

most reliable elements of the unmanned aerial vehicle are the winglets. Further analysis was 

focused solely on studying the reliability of this element. 

Analysis of UAV’s Damage Causes 

Analyzing the causes results in a targeted resolution of identification problems or events. The 

effectiveness of the analysis arises from eliminating the actual causes of the problems rather 

than conflating the causes with apparent symptoms. By directing corrective and preventive 

actions to the appropriate areas, one can expect the probability of problem recurrence to be 

minimized. However, it is recognized that preventing the causes from recurring entirely due to 

a single intervention is impossible. Hence, the repair process is often perceived as a tool for 

continuous analysis. 

12

43

1 1 2 3 1 1

4

1 1

5 5 4 6

N
U

M
BE

R 
O

F 
DA

M
AG

E

Figure 7. UAVs damage in 2019
Source: own work.
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Based on the charts in Figure 4–7, it can be inferred that each year, regardless of 
internal and external factors, the most damage is associated with the skin (winglet). 
There was no observed situation in which there was an accumulation of damage 
instances (winglet) in one year. This means that the element was not deemed unfit 
multiple times, only within a specific period (one year), and did not exceed the da-
mage to the elements chosen by the author. In another case, it would be challenging 
to determine whether such an element is the most reliable, and there is a need for 
reliability studies, or if there was only a problem, for example, with a defective batch 
of elements. Based on the presented research results, it was decided to analyze fur-
ther that the most reliable elements of the unmanned aerial vehicle are the winglets. 
Further analysis was focused solely on studying the reliability of this element.

4. ANALYSIS OF UAV’S DAMAGE CAUSES

Analyzing the causes results in a targeted resolution of identification problems or 
events. The effectiveness of the analysis arises from eliminating the actual causes of 
the problems rather than conflating the causes with apparent symptoms. By direc-
ting corrective and preventive actions to the appropriate areas, one can expect the 
probability of problem recurrence to be minimized. However, it is recognized that 
preventing the causes from recurring entirely due to a single intervention is impos-
sible. Hence, the repair process is often perceived as a tool for continuous analysis.

The following damage analysis was conducted during the observation period of the 
unmanned aerial vehicle type Orbiter. By pinpointing the most unreliable UAVs com-
ponents and identifying their root causes, it is possible to influence the determina-
tion of problem resolution or defect elimination. This is considered absolutely neces-
sary for enhancing reliability.

According to the classification established in the military unit, damages have been 
cataloged into two main categories. The first category includes ground damages re-
sulting from the operational use of BSP (Base Station Processor) during maintenance 
activities (e.g., maintenance time, garage/hangar storage, downtime, etc.). In con-
trast, the second category consists of damages occurring during the aerial vehicle’s 
operation, for example, during the flight phase. The percentage distribution of occu-
rrence of these two categories are presented in Figure 8. Additionally, the documen-
tation identifies 16 classifications of factors influencing BSP damages, out of which 
only four occurred during the observed 3-year period:
1.	 Technical wear and tear: The wear and tear of BSP components or subassemblies 

during its operation necessitates premature replacement.
2.	 Failure to maintain technical parameters: When the aircraft, its installations, or 

systems fail to maintain the required technical parameters, possibly due to misa-
lignment or misconfiguration.

3.	 Adverse impact of weather conditions on aircraft operations: When unexpected 
entry into hazardous weather phenomena affects BSP operations.

4.	 Aviation incidents, such as platform disappearance.
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The following damage analysis was conducted during the observation period of the unmanned 

aerial vehicle type Orbiter. By pinpointing the most unreliable UAVs components and 

identifying their root causes, it is possible to influence the determination of problem resolution 

or defect elimination. This is considered absolutely necessary for enhancing reliability. 

According to the classification established in the military unit, damages have been cataloged 

into two main categories. The first category includes ground damages resulting from the 

operational use of BSP (Base Station Processor) during maintenance activities (e.g., 

maintenance time, garage/hangar storage, downtime, etc.). In contrast, the second category 

consists of damages occurring during the aerial vehicle's operation, for example, during the 

flight phase. The percentage distribution of occurrence of these two categories are presented in 

Figure 8. Additionally, the documentation identifies 16 classifications of factors influencing 

BSP damages, out of which only four occurred during the observed 3-year period: 

1. Technical wear and tear: The wear and tear of BSP components or subassemblies during 

its operation necessitates premature replacement. 

2. Failure to maintain technical parameters: When the aircraft, its installations, or systems 

fail to maintain the required technical parameters, possibly due to misalignment or 

misconfiguration. 

3. Adverse impact of weather conditions on aircraft operations: When unexpected entry 

into hazardous weather phenomena affects BSP operations. 

4. Aviation incidents, such as platform disappearance. 

 

Fig 8. Classification of the damage on aviation and ground. SAMANTA data analysis over 

a three-year period. Own work. 

Ground
28%

Aviation
72%

Figure 8. Classification of the damage on aviation and ground. SAMANTA data analysis over 
a three-year period 
Source: own work.

During the survey, BSP Orbiter 2B operators provided the following responses to the 
same question: out of 24 individuals, 23 indicated the same phase – the flight phase 
(with a particular emphasis on landing). This implies that the majority of damages 
were classified as aviation-related.

In the conducted research, the flight time of BSP was identified as the period during 
which the highest number of damages occurred. The flight time of BSP encompasses 
all activities from takeoff to landing. Therefore, based on survey data, it was determi-
ned that damages most frequently occur during the landing phase.

In summary, the analysis of causes impacting the reliability of selected damages took 
into account the influence of the number of occurrences during the unmanned aerial 
vehicle’s operational time (landing phase). According to literature others factors such 
as human15 or weather conditions16 can be taken into account as well but this is not 
a subject of this paper. 

5. UNRELIABILITY MEASURES

During the operation, the reliability properties of unmanned aerial vehicles are 
initially mapped, and the assumed reliability measures are checked. As a result, this 
allows for quick modernization and the introduction of changes already at the design 
stage.

15	 D. Doroftei, G. De Cubber , H. De Smet, Reducing drone incidents by incorporating human factors in 
the drone and drone pilot accreditation process, [in:] Advances in Human Factors in Robots, Drones 
and Unmanned Systems: Proceedings of the AHFE 2020 Virtual Conference on Human Factors in Ro-
bots, Drones and Unmanned Systems, July 16-20, 2020, Springer International Publishing, USA 2021,  
pp. 71–77.

16	 M. Gao, C.H. Hugenholtz, T.A. Fox, M. Kucharczyk, T.E. Barchyn, P.R. Nesbit, Weather constraints on 
global drone flyability, “Scientific Reports” 2021, no. 11(1), p. 12092.
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Empirical research was necessary to determine the reliability measures. Based on 
general knowledge derived from the operational information used, data acquisition 
was directed towards:
1.	 Diagnosing reliability state.
2.	 Predicting reliability states.
3.	 Operational effectiveness.

The decision was made to use the faultlessness measure to determine the conside-
red objects’ reliability. According to the Author, this measure is the best solution for 
the specific calculation of the reliability of selected elements of an unmanned aerial 
vehicle.

Reliability shaped during the operational stage manifests itself subjectively or objec-
tively. The subjective way reflects assessments obtained through opinions or judg-
ments, while the objective way does so using evaluations of obtained results as a re-
sult of active or passive experiments, descriptions, indicators. Taking the above into 
account, during the research conducted at the 12th Base of Unmanned Aerial Vehic-
les, both methods were used to acquire data through the SAN/SAMANTA (operating, 
failures, repairs, servicing) control assistance system, technical documentation and 
a survey was conducted.

The essence of the research is to determine the characteristics characterizing ran-
dom properties. The randomness of features of an unmanned aerial vehicle is the 
result of unknown and uncontrollable factors. From many considered cases, a popu-
lation group is derived without the ability to obtain data from all objects. The general 
population is determined randomly and is also a set of finite populations subject to 
investigation. Since each unmanned aerial vehicle participating in the study has an 
equal chance of being included in the sample, it was referred to as a simple random 
sample. As a result, the research results were presented as a set of feature values or 
events that occurred.

In the literature, the determination of reliability measures has been divided into two 
cases. The first one is the determination of reliability measures for non-repairable 
elements, and the second one is for repairable elements. In the research, only the 
method of calculating reliability for repairable objects was adopted because objects 
excluded from the study after repair were re-included in the research sample.

6. RELIABILITY CALCULATIONS OF SELECTED COMPONENTS OF UNMANNED 
AERIAL VEHICLE 

The study involved estimating the leading distribution function, the instantaneous 
damage intensity function, and the instantaneous value of the reliability function 
using a non-parametric method. All results were subjected to non-parametric poly-
nomial regression in specialized MATLAB software. 

The study involved objects with a population of n = 90. Damages were repaired and 
reintroduced for further investigation. The repair time was not considered as the 
cumulative repair time exceeds the total operational time of the UAV.



363

https://journal.law.mil.pl

A. MICHALSKA � D. MICHALSKI � S. SAVCHUK � Reliability of unmanned aerial vehicles: winglets’ issue
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In subsequent calculations, the authors approximate the aging times of the objects. For this 
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 of flight time. In the next part, a noticeable smoothed extremum can be 
distinguished, which arises due to the increase in instantaneous damage intensity 
(during 300–600 flight hours), additionally causing a 27% decrease in the instanta-
neous reliability of the objects within 300 flight hours, and simultaneous 45% reso-
urce consumption within 600 flight hours. Therefore, it is reasonable to carry out 
preventive actions between 474 and 608 flight hours. In the last part, it can be ob-
served that with 60% resource consumption in the time interval [600–1944], the cha-
racteristics tend to stabilize the damage process (instantaneous damage intensity, 
instantaneous reliability, and resource consumption). Additionally, it should be no-
ted that resource consumption is proportionally much higher than the instantaneous 
reliability, which exhibits a constant distribution in damage intensity. Furthermore, 
the authors consider the correct estimation of the object’s aging by determining the 
time between failures with a 50% resource consumption jump, which is equal to  

reliability, which exhibits a constant distribution in damage intensity. Furthermore, the authors 

consider the correct estimation of the object's aging by determining the time between failures 

with a 50% resource consumption jump, which is equal to 𝑇𝑇𝑇𝑇0,5 = 545ℎ ,  𝑇𝑇𝑇𝑇1 =  1098ℎ,  hours, 

and 𝑇𝑇𝑇𝑇1,5 =  1729ℎ. The distribution of time between the specified intervals averages 592 flight 

hours. 

Conclusion 

This paper examines the reliability of unmanned aerial vehicles (UAVs) by identifying 

frequently damaged components and their causes. Conducted at a UAV base, the research 

combines analysis of technical documents, an electronic damage archiving system, and 

empirical studies. The results highlight the skin and winglets as the most frequently damaged 

UAV parts. Influencing factors include wear and tear, inadequate maintenance of technical 

parameters, weather conditions, and aviation incidents, with damage often occurring during 

flight, especially during landing.  

  

The researchers used renewal theory and mathematical insights from the SAMANTA system, a 

data archiving, and operational control support system, to assess the reliability of the winglets. 

This system stored and analyzed operational data and revealed that winglets accounted for 37% 

of the damage. Further analysis categorized the damage into maintenance and flight phase 

damage, attributing the causes to wear, lack of maintenance, weather, and aviation incidents.  

  

Interviews with Orbiter 2B UAV operators identified the landing phases as the most susceptible 

to damage. Overall, the study uses technical documentation and empirical data to increase 

understanding and provide critical insights to improve UAV reliability and operations.  
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consider the correct estimation of the object's aging by determining the time between failures 

with a 50% resource consumption jump, which is equal to 𝑇𝑇𝑇𝑇0,5 = 545ℎ ,  𝑇𝑇𝑇𝑇1 =  1098ℎ,  hours, 

and 𝑇𝑇𝑇𝑇1,5 =  1729ℎ. The distribution of time between the specified intervals averages 592 flight 

hours. 

Conclusion 

This paper examines the reliability of unmanned aerial vehicles (UAVs) by identifying 

frequently damaged components and their causes. Conducted at a UAV base, the research 

combines analysis of technical documents, an electronic damage archiving system, and 

empirical studies. The results highlight the skin and winglets as the most frequently damaged 

UAV parts. Influencing factors include wear and tear, inadequate maintenance of technical 

parameters, weather conditions, and aviation incidents, with damage often occurring during 

flight, especially during landing.  

  

The researchers used renewal theory and mathematical insights from the SAMANTA system, a 

data archiving, and operational control support system, to assess the reliability of the winglets. 

This system stored and analyzed operational data and revealed that winglets accounted for 37% 

of the damage. Further analysis categorized the damage into maintenance and flight phase 

damage, attributing the causes to wear, lack of maintenance, weather, and aviation incidents.  

  

Interviews with Orbiter 2B UAV operators identified the landing phases as the most susceptible 

to damage. Overall, the study uses technical documentation and empirical data to increase 

understanding and provide critical insights to improve UAV reliability and operations.  
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. The distribution of time be-
tween the specified intervals averages 592 flight hours.

7. CONCLUSION

This paper examines the reliability of unmanned aerial vehicles (UAVs) by identify-
ing frequently damaged components and their causes. Conducted at a UAV base, 
the research combines analysis of technical documents, an electronic damage ar-
chiving system, and empirical studies. The results highlight the skin and winglets as 
the most frequently damaged UAV parts. Influencing factors include wear and tear, 
inadequate maintenance of technical parameters, weather conditions, and aviation 
incidents, with damage often occurring during flight, especially during landing. 

The researchers used renewal theory and mathematical insights from the SAMAN-
TA system, a data archiving, and operational control support system, to assess the 
reliability of the winglets. This system stored and analyzed operational data and re-
vealed that winglets accounted for 37% of the damage. Further analysis categorized 
the damage into maintenance and flight phase damage, attributing the causes to 
wear, lack of maintenance, weather, and aviation incidents. 

Interviews with Orbiter 2B UAV operators identified the landing phases as the most 
susceptible to damage. Overall, the study uses technical documentation and em-
pirical data to increase understanding and provide critical insights to improve UAV 
reliability and operations. 
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